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Abstract In this paper we investigate the properties of the travelling combus-
tion wave solutions in a diffusion-thermal model with a two-step competitive
exo-endothermic reaction mechanism in one spatial dimension under adia-
batic conditions. The model is analysed both numerically and analytically
using asymptotic analysis. It is demonstrated that depending on the parame-
ter values, the flame speed as a function of parameters is either a single-valued
monotonic function or a double-valued c-shaped function with the turning
point type of behaviour. For the case of single-valued flame speed, two flame
regimes are identified: the regime with exo- and endothermic reaction domi-
nation. Two different routes to extinction are found as well as regions of the
existence of combustion waves in the parameter space. Prospects of further
work are also discussed.
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1 Introduction

This work concerns the existence and propagation of reaction fronts through
reactive media where diffusive processes are present and where a main exother-
mic reaction is accompanied by an endothermic reaction as well. A number of
authors have addressed problems where an independent endothermic process
affects the progress of a combustion front [5,13–15]; our concern in this paper
is with the possibility of competitive endothermic and exothermic reactions,
where the same reactive material provides the feed for both reactive steps [9].
Though most observed physico-chemical phenomena are a consequence of sev-
eral, often numerous, concurrent or consecutive endothermic and exothermic
reactive processes, useful understanding can often be gained by considering
much simpler lumped models which reproduce the essential phenomenology.
In some cases, notably when thermal effects are prominent in the process, the
simplest useful model comprises a pair of reactions, one exothermic and one
endothermic, characterised by different chemical kinetics. These reactions may
feed on the same unique reactant material, so-called competitive reactions, or
each reaction may independently consume a different reactant, so-called paral-
lel reactions [2]. In the parallel case the coupling between the reactions is solely
thermal, whereas in the competitive case there is a second coupling through
the reactant consumption. In contrast to the case of parallel reactions, which
has been widely studied, competitive reactions have received little attention.
This situation is undesirable given the appropriateness of competitive schemes
in modelling decomposition or pyrolysis processes [1,20] and their applicability
to ammonium nitrate based explosives [16]. An exception to this observation
is the study by [3] which established the existence of combustion wave multi-
plicity in the case of competing exothermic reactions. Whereas, in the parallel
case, the net enthalpy production by complete consumption of both reactants
is uniquely determined, this is not true for competitive reactions, where the
net production depends on the full time history of the process; if the temper-
ature is kept relatively low, by thermal diffusion or other extraneous effects
e.g. Newtonian or radiative cooling, the net production may be, counterin-
tuitively, actually increased. Hmaidi et al. [9] investigated the existence and
stability of travelling one-dimensional reaction fronts propagating through a
solid reactive slab (infinite Lewis number), effectively extending the work of
Matkowsky and Sivashinsky [11] to the case where heat is lost through a com-
petitive endothermic reaction term. The behaviour of the competitive system
was modelled by regarding the endothermic reaction as a perturbation to an
exothermic reaction. This necessitated some restrictions on the ordering of
the kinetic parameters of the endothermic step. Specifically, the endothermic
reaction was assumed to have twice the activation energy of the exothermic
reaction and a pre-exponential frequency term much greater than that for the
exothermic reaction. In the present paper we scrutinise the consequences of
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these assumptions, particularly with reference to the relative magnitudes of
the activation energies. Moreover, we modify the ratio of activation energies
so that the endothermic reaction plays a greater role in the overall reaction
scheme and examine the behaviour of the resultant reaction fronts.

The work reported here therefore extends the work [9] and our previous
work [21] to consider a more comprehensive range of parameter values. We
again consider propagation of a reaction front in which the driving exothermic
reaction competes with an endothermic reaction that consumes both reactant
and heat within the system. As mentioned, the parameter values we assume
permit a stronger contribution from the endothermic reaction. Following [9],
we assume adiabatic conditions, though unlike [9] we allow for the diffusion of
reactant as well as heat [21]. We also relax the restriction of large activation
energies and pre-exponential frequency of the endothermic reaction.

2 Model

We consider a diffusional-thermal model with two-step kinetics for premixed
combustion wave propagation in one spatial dimension under adiabatic condi-
tions. It is assumed that the reactant undergoes two competitive reactions: one
exothermic and one endothermic, and that the reaction products are chemi-
cally inert and have no effect on physical properties such as the diffusivity of
the reaction surroundings. Arrhenius kinetics are assumed for both reactions.
The nondimensional equations governing this process can be found in [21] and
can be written as

ut = uxx + v(e−1/u − qre−f/u),
vt = L−1vxx − vβ(e−1/u + re−f/u),

(1)

where t and x are non-dimensional time and space coordinates; u and v are
the dimensionless temperature and fuel concentration; β is the dimensionless
activation energy of the exothermic reaction; q is the ratio of the enthalpies of
the endo- to exothermic reaction; r is the ratio of pre-exponential factors of
the endothermic to exothermic reaction; f is the ratio of the activation energy
of endothermic to exothermic reaction; L is the Lewis number for the fuel.

Equations (1) are considered subject to the boundary conditions

u = 0, v = 1, for x → ∞,
ux = 0, vx = 0, for x → −∞.

(2)

On the right boundary we have cold (u = 0) and unburned state (v = 1).
The nondimensionalized ambient temperature is taken to be equal to zero.
On the left boundary (x → −∞) neither the temperature of the mixture nor
the concentration of fuel can be specified. We only require that there is no
reaction occurring so the solution reaches a steady state of (1). Therefore the
derivatives of u, v are set to zero for x → −∞.
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We seek the solution to (1 - 2) in the form of a travelling wave solution,
which propagates without changing its speed and form and in the co-moving
coordinate frame, ξ = x− ct, satisfy

uξξ + cuξ + v(e−1/u − qre−f/u) = 0,
L−1vξξ + cvξ − βv(e−1/u + re−f/u) = 0,

(3)

where c is the flame speed.

3 Asymptotic analysis

We define crossover temperature as u = u∗, such that the rate of heat release
from the exothermic reaction is equal to the rate of heat consumption by
the endothermic reaction, i.e. u∗ = (f − 1)/ ln(rq). Characteristic values of
the crossover temperature are shown in figure 1 depending on the parameter
values. There are two regions with u∗ > 0: (i) f > 1, rq > 1, (ii) f < 1,
rq < 1; and two regions with u∗ < 0: (iii) f < 1, rq > 1 and (iv) f > 1,
rq < 1. For regions of parameters where u∗ is negative, for any physically
feasible flame temperature the rates of heat release and consumption cannot
be equal i.e. one always dominates the other. For the case f > 1, rq < 1 the
exothermic reaction always releases much more heat than can be consumed by
the endothermic reaction. Therefore the solution can exist in this parameter
region. On the other hand, if f < 1, rq > 1 the heat balance is in favour of
heat consumption and the rate of heat reduction by the endothermic reaction
is always greater. Therefore this implies flame extinction. In this paper we
are mainly focused on the analysis of flame properties in the region (i) where
f > 1, rq > 1.

For parameter values with u∗ > 0, there is finite value of the crossover
temperature, unless qr → 1 and u∗ → ∞ as shown in figure 1 with arrows.
The limit f → 1 is also distinguished, since u∗ tends to zero in this case and
changes sign as we cross the line f = 1. In fact, for f = 1 the problem (3)
becomes a single-step model

uξξ + cuξ + v(1− rq)e−1/u = 0,
L−1vξξ + cvξ − βv(1 + r)e−1/u = 0.

(4)

Obviously, if rq > 1 then heat release is negative in (4) and no solutions can
exist. So, this supports the assumption that f = 1 and rq > 1 is the boundary
of the region, f < 1 and rq > 1 , where the solution does not exist. If rq < 1,
then changing the variables to z = ξ

√
1− rq, yields

uzz + c̃uz + ve−1/u = 0,

L−1vzz + c̃vz − β̃ve−f/u = 0,
(5)

where β̃ = β(1 + r)/(1 − rq) and c̃ = c/
√
1− rq. In the limit of large β̃ this

gives a well known result for the flame speed, c̃ =

√
2Lβ̃−1e−β̃/2, and flame
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Fig. 1 Plane of parameters ln(rq) vs f .

temperature, ub = β̃−1. Note that as rq → 1, the value of β̃ becomes unlimited
and these expressions for speed and temperature should be accurate. In the
original variables we have

c =

√
2L(1− rq)2

(1 + r)β
exp

[
− β(1 + r)

2(1− rq)

]
, ub =

1− rq

β(1 + r)
. (6)

It is seen that according to (6) as rq tends to unity the flame speed approaches
zero in a very abrupt manner, also the flame temperature vanishes. This is
another argument towards extinction at f = 1 and rq > 1. It is noted that
rq = f = 1 is a unique situation where the governing equations degenerate to

uξξ + cuξ = 0,
L−1vξξ + cvξ − β(1 + r)ve−1/u = 0,

(7)

which again has only the trivial solution u = 0 and v = const.

3.1 Endothermic reaction dominated regime

In the case f − 1 → 0 and rq > 1 the crossover temperature vanishes while
being positive and it can be treated as a small parameter for the asymptotic
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analysis i.e. u∗ ≡ ε, where ε is an asymptotically small number. We introduce
a new coordinate η = cξ and rewrite (3) as

uηη + uη + vc−2(e−1/u − qre−f/u) = 0,
L−1vηη + vη − vc−2β(e−1/u + re−f/u) = 0,

(8)

which is solved subject to the following boundary conditions u → ε(1 − u0),
v → 0 for η → −∞ and u → 0, v → 1 for η → +∞. The boundary condition for
u in the burned region implies that it is smaller than the crossover temperature.
This is physically feasible since this condition implies that the heat released
in the course of the exothermic step exceeds the heat consumption in the
endothermic step and this excess of enthalpy is used to preheat the cold fresh
mixture in front of the reaction region.

As it is usually done in combustion theory, the governing equations are con-
sidered separately in two regions: the inner zone where the reaction terms are
maximal, and the outer regions, where the reaction is frozen and the transport
processes are dominating. The outer regions are located in front and behind
the reaction zone, which has an asymptotically small thickness and for defi-
niteness can be considered to be located at η = 0. The choice of the location of
the reaction zone is arbitrary due to the translational symmetry of the problem
(3). The outer problem can therefore be written as

uηη + uη = 0,
L−1vηη + vη = 0.

(9)

Taking into account the boundary conditions, the solution for η < 0 can be
written as u− = ε(1 − u0), v = 0, and for η > 0 as u+ = u+(0) exp(η),
v+ = 1 − v(0)+ exp(−Lη). The values u+(0) and v+(0) should be obtained
from matching with the inner region solution.

We introduce the an inner coordinate as z = η/ε and seek the solution to
the inner problem in a form of the series u(z) = ε(1−u0−εs+...), v(z) = εp+...,
which after substitution into (3), yields in the leading order

szz −Qpe−s (s1 + s) = 0,
L−1pzz − βQpe−s

(
1 + q−1

)
= 0,

(10)

where the reaction terms are expanded into a series in ε. The definition of
the crossover temperature is recalled, and the following notations have been
introduced: s1 = u0/ε and Q = ε−2c2e−ε(1−u0). It is convenient to define
p = Lβ(1 + q−1)ε(f − 1)−1y and rewrite (10) as

szz −Ωye−s (s1 + s) = 0,
yzz −Ωye−s = 0,

(11)

where Ω = LβQ(1 + q−1).
Comparing the solutions in the outer and inner regions we find that u+(0) =

ε(1 + u0), v
+(0) = 1, and s and y have to satisfy the following boundary con-

ditions
s = 0, y = 0 for z → −∞,
sz = 1− u0, yz = β ln(rq)

(
1 + q−1

)
for z → ∞.

(12)
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Equations (11- 12) constitute a two-point boundary value problem with Ω and
s1 being the eigenvalues. We solve it numerically by using the shooting and
relaxation methods. This approach gives us the numerical values for Ω and s1,
which are both of the order of O(1).

For other parameters fixed and being O(1), the following expression for the
flame speed and temperature uf in the product zone can be expressed as

uf → u∗, c =

√
βL(1 + q−1)

Ω
u∗ exp

(
−1 + s1u

∗

2u∗

)
, (13)

where Ω and s1 are constants of the order of O(1) and do not depend of f .

3.2 Exothermic reaction dominated regime

For the case f � 1 the second endothermic reaction is deactivated and the
one-step exothermic reaction model can be considered. In the case of asymp-
totically large β, this gives the well know formulas for the flame speed and
burned temperature

uf → ub = β−1, c =

√
2L

β
exp

(
−β

2

)
. (14)

Equations (14) are valid regardless of the values of other parameters r and q
as long as they are finite.

4 Travelling wave solutions

The two-point boundary value problem (2-3) was solved numerically by using
the standard shooting and relaxation methods described elsewhere (see [6]
and references therein). In figure 2 a typical travelling wave solution profile is
plotted in a co-moving coordinate frame. The dependence of u on ξ is shown
with the solid line and the concentration of fuel, v(ξ), with the dashed line.
The interval of integration is scaled so that ξ changes in the range from 0 to
1 in figure 2. In the original variables the length of the interval of integration
is approximately 1300.

In figure 3, the maximum flame temperature is plotted as a function of f
for L = 1, q = 5, r = 2 and two values of β as shown in figure caption. It
is clearly seen in figure that there are two distinct flame regimes. For f > 2
the endothermic reaction is almost completely frozen, the flame temperature
is equal to the adiabatic flame temperature in the one-step model (14), which
is shown with the dashed lines and is equal to the inverse of the activation
energy of the exothermic reaction. We can call this an exothermic reaction
dominated regime. As f is decreased there is an intermediate flame regime
around f = 1.5, where the endothermic reaction becomes important and the
temperature diverges from ub. As f tends to unity the endothermic reaction
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Fig. 2 Combustion wave solution profiles, u(ξ) and v(ξ), for L = 1, β = 10, f = 2, q = 2
and r = 5.

dominated regime emerges. In this case the flame temperature converges to u∗

and vanishes as f approaches 1 according to equation (13).

In figure 4, the dependence of the flame speed on f is plotted. The other
parameter values are given in the figure caption. It is seen to exhibit the same
type of behaviour as the flame temperature. For large f the speed is constant
and is close to the asymptotic flame speed for the one-step model (14) shown
with the dashed lines. The discrepancy between the numerical and asymptotic
results is larger for β = 5 (curve 1) and reduces for β = 10 (curve 3). This is
expected since the asymptotic results (14) are valid for β � 1. Changing L
from 1 (curve 3) to 10 (curve 2) also affects the flame speed as it is qualitatively
predicted by formulas (14). The quantitative difference between numerics and
analytics is significant here, which is also expected, since in the derivation of
(14) it was assumed that L ∼ O(1).

To summarize, we see that two flame regimes of exo- and endothermic
reaction domination are clearly demonstrated both numerically and asymp-
totically. The two approaches are shown to agree well. It is also seen in figures
3 and 4 that as f approaches 1 for finite rq > 1, flame extinction occurs. The
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Fig. 3 Dependence of the flame temperature, uf , on f for β = 5 (curve 1) and β = 10
(curve 2) while other parameters are L = 1, q = 5, r = 2. The thick solid lines correspond
to results of the numerical integration. The dashed lines represent the asymptotic results
(14) for the one-step model. The thin solid curve is plotted according to (13).

extinction is characterized by the linear decrease of the flame temperature as
a function of f − 1 and occurs very sharply for the flame speed.

The above analysis corresponds to the region (i) of the parameter plane,
where both rq and f are greater then one (see figure 1). Next we investigate
the properties of the combustion wave solutions in other regions of parametric
plane 1. The results of these studies are represented in figure 5, where the
dependence of the flame speed is plotted versus q in a log-log scale. Parameter
r is taken to be equal to one, therefore the sign of ln(rq) is solely determined
by the value of q. The values of L and β are fixed to 1 and 5 respectively. The
properties of the travelling waves are studied along several lines f = const in
the plane ln(rq) vs. f , so as to cover all characteristic regions of the plane in
figure 1. The curve marked with the label ’1’ corresponds to f = 2. This is
a regime where the exothermic reaction dominates the endothermic reaction
which is not activated. As a result, the flame speed is almost independent of
the ratio of heats of the reactions, q, over four orders of magnitude variation
of q. The dashed line also shows the asymptotic value of c for large activation
energy calculated according to (14). There is significant discrepancy between
the numerical and asymptotic results, which is expected since the value of
the activation energy, β = 5, is not very large here. On the right boundary
of the graph the numerically obtained flame speed starts to decrease and the
dashed and solid lines begin to diverge. In this case q is becoming large and
the crossover temperature, u∗, becomes comparable to ub from (14). Therefore,
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c
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Fig. 4 Dependence of the logarithm of the speed of combustion wave, c, on f for q = 5,
r = 2 and L = 1, β = 5 (curve 1), L = 10, β = 10 (curve 2) and L = 1, β = 10 (curve
3). The thick solid lines correspond to results of the numerical integration. The dashed
lines represent the asymptotic results (14) for the one-step model. The thin solid curves are
plotted according to (13).

the assumption of deactivated endothermic reaction breaks for q � 1. As f
is decreased from 2 to 1 the c(q) dependence bends for smaller values of q
since the crossover temperature decreases as f tends to 1 and the endothermic
reaction becomes activated for smaller values of q. It should be noted that for
f > 1 the travelling wave solution exists for all values of q considered here.
However, for f → 1 the limiting behaviour is approached which is governed
by (6). The numerical results for the case f = 1 are shown with the solid line
marked ‘2’. The dash-dotted line also represents the asymptotic data plotted
according to formula (6), which agrees very well with the numerical results.
The case f = 1 is distinguished from the case f > 1 since as rq tends to 1
the flame speed, c, tends to 0 as is clearly seen in figure 5 and equation (6).
For values of q greater than 1 the travelling combustion waves cease to exist.
Curve 2 in figure 5 marks the switching of the monotonic dependence of c on
q to c-shaped type of c(q) behaviour. This is illustrated in figure 5 with the
curve ‘3’ plotted for f = 0.96, where the turning point type of flame extinction
is clearly observed: for q less than the turning point value, q∗, there are two
combustion wave solutions travelling with different speed, whereas for q > q∗

the travelling wave solutions cease to exist. The turning point value q∗ strongly
depends on f and rapidly decreases as f is becoming smaller than one.
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Fig. 5 Dependence of the speed of combustion wave, c, on q in a log-log scale for L = r = 1,
β = 5 and f = 2 (curve 1), f = 1 (curve 2), and f = 0.96 (curve 3). The solid lines correspond
to results of the numerical integration. The dashed lines represent the asymptotic results
(14) for the one-step model. The dash-dotted line are plotted according to (6).

5 Conclusions

In this paper we have investigated the properties of the travelling combustion
wave solutions in a diffusion-thermal model with two-step competitive exo-
endothermic reaction mechanism in one spatial dimension under adiabatic
conditions. The model is investigated both numerically by solving the two-
point boundary value problem and analytically using asymptotic analysis. The
results of these approaches agree well, thus supporting their validity.

It is found that the flame speed as a function of parameters is either a
single-valued monotonic function or a double-valued c-shaped function with
the turning point type of behaviour. The switching between these two types of
behaviour occurs at f = 1 and rq < 1. For f < 1 the speed of combustion wave
as a function of q exhibits a turning point at a certain value of q = q∗ such
that rq∗ < 1. For q < q∗ there are two combustion wave solution branches, fast
and slow, travelling with different velocities and the solutions cease to exist for
q > q∗. In the case f > 1, the flame speed is a single-valued monotonic function
with respect to the parameters. It is found that for values of f sufficiently larger
than one, the endothermic reaction is not activated and the combustion wave
solution behaves similarly to the one-step exothermic reaction model. We call
this regime of flame propagation the exothermic reaction dominated regime. In
the case when rq > 1 as f tends to one, the endothermic reaction is activated
and begins to dominate the exothermic reaction. This is accompanied by a
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decrease of the flame temperature, which follows the crossover temperature,
u∗, and reduces the combustion wave velocity. As a result, at f = 1, the flame
speed vanishes and the extinction of combustion wave occurs.

To summarize, the model shows rich dynamical behaviour depending on
the choice of the parameter values. Interesting instability characteristics are
also expected to occur under different combustion regimes as discussed in this
paper. We have succeeded with the stability analysis in the exothermic reaction
dominated regime [21] and the aim of our future investigation is to carry out
a systematic stability analysis of combustion waves in the current model.
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