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Abstract. In this paper we investigate the linear stability and properties, such as speed, of the
planar travelling combustion front. The speed of the front is estimated both analytically, using the
matched asymptotic expansion, and numerically, by means of the shooting and relaxation methods.
The Evans function approach extended by the compound matrix method is employed to numerically
solve the linear stability problem for the travelling wave solution.

Key words. combustion waves, Evans function, compound matrix, Nyquist plot

AMS subject classifications. 35K57, 80A25

PII. S0036139901400240

1. Introduction. Problems involving combustion waves are characterized by
strong dependence of the reaction rate, which is usually modelled by the Arrhenius
law, on the temperature. This sharp dependence of the reaction rate naturally divides
the structure of the travelling front into three regions. Ahead of the combustion wave,
in a preheat zone, the temperature is low and there is almost no reaction. When the
temperature becomes sufficiently high, the reaction rate increases exponentially and
the fuel is converted into heat very quickly. This takes place in a narrow region called
the reaction zone. Finally, behind the front, in a product zone, all fuel is consumed, no
reaction occurs, and the temperature is constant. The temperature and the amount
of fuel change rapidly in the reaction zone. The above picture in some sense is close to
the boundary layer problem. Therefore similar methods of analysis, like the matched
asymptotic expansion (MAE), apply in both cases.

The analysis of steady propagating planar combustion fronts is usually based on
MAE. According to this method, in the limit of high activation energy, we seek
the travelling wave solution in the form of a series in all three regions; then on the
boundaries of these zones the expansions are matched in each order of a small pa-
rameter. The asymptotic procedure in principle allows us to find the solution with
any desired accuracy and for arbitrary Lewis number. As a rule, only the leading
order is considered [1, 2, 3, 4, 5]; however, the higher order approximations can also
be obtained [6]. The method of MAE is valid in the limit of large activation energy,
and the properties of the steady combustion front, such as speed, can be found only
numerically for general values of activation energy. Numerical analysis is mostly fo-
cused on solving the system of partial differential equations (PDE) that describe the
problem [7, 8]. However, PDE can always be reduced to a system of ordinary differ-
ential equations (ODE) for steady propagating planar waves. In this paper we take
advantage of the ODE formulation of the problem, which is usually more convenient
for numerical analysis. We use shooting and relaxation methods to investigate the
dependence of the speed of the front on the parameters of the problem. Besides the
benefits of technical implementation, an ODE formulation does not depend on the
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stability of the travelling wave and therefore allows us to continue the solution branch
over a broader parameter range.

As we vary the parameters of the problem, a steady propagating planar front
can lose stability, giving rise to either pulsating or cellular flames [5, 9]. Analytical
investigation of the stability using the MAE leads to the so-called closure problem.
In contrast to steady travelling waves, in this case the leading order equations depend
on first order corrections, first order equations include second order terms of the
asymptotic expansion, etc. In order to find the solution to the leading order problem,
an infinite number of equations have to be investigated. One of the ways of overcoming
this obstacle is just to truncate the expansion [1, 2, 3, 4, 5, 9]. This yields a closed
problem with a replacement of the Arrhenius reaction rate by a delta-function source
depending on the temperature at the reaction front. The truncated model has been
used extensively for the stability analysis of combustion waves [1, 2, 3, 4]. However,
the model with the delta-function source suffers from inconsistencies, as was noted in
[5, 9]. The inverse of the small parameter of the expansion appears explicitly in the
exponential terms describing the strength of the source. In other words, temperature
variations behind the front are considered to be small in the exponential terms and
of leading order elsewhere.

An asymptotically consistent approach was proposed in [5] for the system with the
Lewis number of the order of unity. In this case the enthalpy does not change at the
leading order. A closed problem was derived for the leading order temperature and
the first order enthalpy. However, until recently [9], there has not been a consistent
approach that treats the model with arbitrary Lewis number.

In [9] a generalization of the MAE method was introduced. The coefficients in
the expansions are allowed to depend on the expansion parameter. This enables
the correct scaling of the temperature variations ahead of and behind the reaction
zone; namely, a restriction is imposed connecting the leading order temperature in
the preheat zone and the first two terms of the asymptotic expansion in the prod-
uct zone. The constraint reflects the fact that small temperature variations behind
the front change the leading order terms in the preheat zone. The resulting model
includes equations for the leading order variables ahead of the reaction zone and for
the first order temperature variations in the product zone, together with matching
and boundary conditions. There is no restriction on the range of the Lewis number
values.

However, the models describing the propagation of the steady planar combus-
tion waves were derived only in the leading order of the expansion parameter of the
asymptotic procedure. In other words the papers mentioned above analyze the linear
stability of models which are different from the original one with the Arrhenius ki-
netics. This is fully justified by the complexity of the problem and reveals the lack of
alternative methods to MAE. Fortunately, recent advances in the application of the
Evans function [10] to stability analysis of solitary waves and fronts [11, 12, 13, 14, 15]
provide us with a powerful tool for the semianalytical investigation of travelling front
stability.

The linear stability problem can always be formulated as an eigenvalue problem
for some differential operator. The Evans function was first introduced in [10] to
study the stability of nerve pulses as an analytical function whose zeros correspond
to the isolated eigenvalues of this differential operator. In some specific cases the
Evans function can be found explicitly, and the Evans function being zero gives the
dispersion relation. In other cases, like solitary waves of a generalized Kordeweg–
deVries (KdV) equation [16] and generalized nonlinear Schrödinger equation [17], the
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asymptotic behavior of the Evans function can be found using the results obtained
in [16], where the derivative of the Evans function was connected to the Melnikov
integral [18]. The knowledge of asymptotics allowed the authors to localize zeros of
the Evans function and to solve the stability problem analytically.

The asymptotic form of the Evans function for the combustion problem was de-
rived in [15] in the limit of large activation energy and Lewis number of the order of
unity. The results of [15] agree with the predictions of the MAE analysis of [5]. Zeros
of the Evans function and therefore the stability of the combustion front can be found
only numerically for general parameter values. Previously, this problem was solved
by direct integration of the governing PDE [7, 8]. We cannot expect this method to
be accurate near the critical parameter values, where the rate of instability is weak
and a long integration time is needed to detect it. Furthermore, this method is rel-
atively difficult for computational implementation in comparison with the numerical
estimation of the Evans function proposed in [19], which is based on ODE integra-
tion. However, the latter method is applicable only for problems with a specific type
of geometry, such as the linear stability problem for the KdV equation, and fails to
work for stiff systems [12], such as in our case.

In the present paper we apply the Evans function method to the stability analysis
of the planar combustion front. The linear stability problem associated with the trav-
elling combustion wave is an example of a stiff problem. We extend the conventional
algorithm for calculating the Evans function [19] by the compound matrix method
[12, 13, 20, 21, 22], which was first employed for analysis of the hydrodynamic stabil-
ity for the Orr–Sommerfeld equation. This method eliminates the stiffness and makes
the linear stability problem numerically tractable.

In this paper we use the combination of shooting-relaxation and the Evans func-
tion method (extended by the compound matrix method) as a consistent approach
for numerical investigation of both properties and stability of the travelling planar
front, based on the ODE formulation of the combustion problem. We show that the
method is valid for a wide range of the parameter values.

The paper is organized as follows. The model and governing equations are intro-
duced in section 2. In section 3 we show how MAE can be used to derive travelling
wave solutions in the limit of large activation energy, and we compare these solutions
with the solutions obtained by shooting and relaxation methods. The linear stability
problem is formulated in section 4, whereas the relation to the Evans function is dis-
cussed in section 5. In section 6 we quote the asymptotic results of [15] for the Evans
function. Numerical stability analysis is carried out in section 7. Finally, concluding
remarks can be found in section 8.

2. Model. We consider a premixed fuel in one dimension. The heat loss is
neglected. We assume that the rate of exothermic combustion is well described by the
Arrhenius law. In nondimensional coordinates, the equations governing this process
can be found in [7] and are given as

ut = uxx + ve
−1/u, vt = τvxx − βve−1/u,(2.1)

where u and v are the nondimensional temperature and mass fraction of the fuel,
respectively; τ is the inverse Lewis number (the ratio of the diffusion rates of mass
and heat); and β is the ratio of the activation energy to heat release.

We consider the ambient temperature to be equal to zero. This approximation
simplifies the problem, decreasing the number of parameters. As is noted in [7], this is
a way to circumvent the “cold-boundary problem” and does not change the behavior of
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the system. It is not an appropriate simplification when considering ignition problems.
Parameter τ varies from zero, for solid fuel, to unity, for gaseous fuels. The parameter
β is of the order of unity or larger.

We consider system (2.1) subject to the following boundary conditions:

u(x, t) → β−1, v(x, t) → 0 as x→ −∞,
u(x, t) → 0, v(x, t) → 1 as x→ +∞.(2.2)

On the right boundary we have a cold (u = 0) and unburned (v = 1) state, whereas
the opposite limit corresponds to the hot (u = β−1) and burned (v = 0) state.

3. Travelling wave solution. Let us consider the case τ ∼ O(1). We will seek
the solution of (2.1) in a form of the front travelling with a constant speed c

u(x, t) = u(ξ), v(x, t) = v(ξ),(3.1)

where we have introduced a moving coordinate frame ξ = x − ct. After substituting
(3.1) into (2.1), it is easy to obtain two second order differential equations

uξξ + cuξ + ve
−1/u = 0, τvξξ + cvξ − βve−1/u = 0(3.2)

and boundary conditions

u = β−1, v = 0 as ξ → −∞,
u = 0, v = 1 as ξ → +∞.(3.3)

Now let us make the reaction terms in (3.1) symmetric by introducing new variables
ũ = βu, ṽ = v and scale the coordinate z = cξ. This gives us the equations

ũzz + ũz + β
2Qṽeβ(1−1/ũ) = 0, τ ṽzz + ṽz − β2Qṽeβ(1−1/ũ) = 0,(3.4)

where Q = (βc2eβ)−1 is a flame speed eigenvalue, which has to be found. Boundary
conditions are modified as follows:

ũ = 1, ṽ = 0 as z → −∞,
ũ = 0, ṽ = 1 as z → +∞.(3.5)

In the new variables the reaction zone is of the order of β−1. Outside this zone the
reaction terms of (3.4) become negligible. Hence in the outer region (3.4) can be
written as

ũzz + ũz = 0, τ ṽzz + ṽz = 0,(3.6)

subject to boundary conditions (3.5).
We seek the solution of problem (3.6) in the form of a series, with β−1 being a

small parameter, and hence we postulate

ũ = U0 + β
−1U1 + · · · ,

ṽ = V0 + β
−1V1 + · · · ,

Q = Q0 + β
−1Q1 + · · · .

(3.7)

In the zeroth order, the solution of equations (3.6) is

U0 =

{
1, z < 0,
e−z, z > 0,

and V0 =

{
0, z < 0,
1− e−z/τ , z > 0.

(3.8)
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In order to find Q0 we should match the solution (3.8) with the solution of the inner
problem.

Let us consider (3.4) in a thin boundary layer where the reaction occurs. We
introduce the stretched coordinate y = βz and seek solutions of the form

ũ = 1 + β−1u1 + β
−2u2 + · · · ,

ṽ = β−1v1 + β
−2v2 + · · · ,

Q = Q0 + β
−1Q1 + · · · .

(3.9)

After substituting (3.9) into (3.4) and leaving the leading terms of the order O(β),
we obtain the equations

ü1 +Q0v1e
u1 = 0, τ v̈1 −Q0v1e

u1 = 0,(3.10)

with the dot denoting derivative ∂/∂y. In deriving (3.10) we have assumed that
τ ∼ O(1) and Q0 ∼ O(1). On the boundaries we can require that the following
matching conditions be satisfied:

lim
y→±∞ [u1(y)− U1(0±)− U0z(0±)y] = 0,

lim
y→±∞ [v1(y)− V1(0±)− V0z(0±)y] = 0.

(3.11)

On the left boundary from (3.8) it follows that U0z(0−) = V0z(0−) = 0, and we can
rewrite (3.11) in the form

u1 = U1(0−), v1 = V1(0−)
u̇1 = 0, v̇1 = 0

as y → −∞.(3.12)

System (3.10) has the integral

u1 + τv1 = C1 +D1y.(3.13)

Applying the matching condition (3.12), it can be shown that D1 = 0 and C1 =
U1(0−) + τV1(0−). Using this integral system, (3.10) can be reduced to a single
equation

θ̈ − kθe−θ = 0,(3.14)

where θ = C1 − u1, k = Q0/τe
C1 . Equation (3.14) can be treated as the equation

of motion of a point particle with unit mass in the potential W (θ) = k(1 + θ)e−θ.
The potential W (θ) has a maximum only for θ = 0. Conditions (3.12) imply that
θ̇(−∞) = 0. This is possible only if the energy E = θ̇2/2 + W (θ) is equal to the
maximal value of the potential W (0) = k. Therefore, θ = 0 as y → −∞, and
consequently, C1 = U1(0−) and V1(0−) = 0. On the other hand, as y → +∞ the
potential W (y) decays exponentially and θ̇ → √

2k.
Returning to the original problem, the left boundary conditions can be written

as

u1 = U1(0−), v1 = 0
u̇1 = 0, v̇1 = 0

as y → −∞.(3.15)
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Fig. 1. Numerically determined speed of the travelling front as a function of β. Solid lines
correspond to the results obtained by shooting and relaxation methods for values of parameter τ =
0.1, 0.5, and 1.0 (right to left). Crosses represent the speed of the front calculated by direct PDE
integration of (2.1) for τ = 1.0.

On the right boundary, it follows from (3.11) and (3.13) that(
∂U0

∂z

)
z=0+

= −τ
(
∂V0

∂z

)
z=0+

= −
√

2Q0

τeU1(0−)
.(3.16)

For planar front solution U1(0−) = 0 and from (3.8) we have (∂U0/∂z)z=0+ = −1.
Taking into account the definition of Q, we can obtain the following estimation of the
speed:

c =
√
2τ−1β−1e−β/2,(3.17)

which agrees with the results of [7, 8] in the limit of large β. Note that a similar
expression for the front speed was first found in [6].

We also solved (3.2) numerically. As in [23], we used the shooting method to
obtain the guess solution, and then the results were corrected with a more accurate
method, namely, relaxation. Combination of these methods allowed us to numerically
obtain the dependence of the travelling front velocity on the parameters β and τ . In
Figure 1 we plot the speed of the front as a function of β for three different values of τ .
The results are compared to the predictions obtained in [7] by direct PDE integration
of (2.1). The accordance between these two approaches is excellent.

In Figure 2 we compare the prediction of the asymptotic formula (3.17) for the
speed of the front with the results obtained numerically. As can be seen, the corre-
spondence is quite good for τ = 1 and large values of β. However, when we decrease
the value of τ , the approximation of the speed (3.17), which is valid for τ ∼ O(1),
becomes unsatisfactory. For example, when τ = 0.1, the difference between the ana-
lytical and numerical results becomes significant.

The stability analysis of the steady propagating combustion front carried out in
the following sections is based on how accurately we can approximate the solution of
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Fig. 2. Logarithm of the speed of the travelling front as a function of β for values of parameter
τ = 0.1 and 1.0. Dots correspond to the numerical results, whereas dashed lines represent the
approximation of the speed according to the formula (3.17). In each case the upper line is for
τ = 0.1 and the lower line for τ = 1.0.

(3.2). Standard relaxation routine (see [23] and references therein) allows us to control
the average local correction made on each iteration step. The solution is considered
to be resolved if the correction is less than 10−15. We also tested the accuracy of the
method independently by changing the step of the grid and comparing the resulting
variations in the values of the front speed. For example, a fourfold mesh refinement
changes the value of the front speed in the ninth significant digit. Therefore we assume
that the numerical procedure outlined here works reasonably well.

4. Stability of a travelling front. As a first step in the analysis of travelling
wave stability, we linearize (2.1) around the front solution (3.1):

u(x, t) = u(ξ) + ϕ(ξ, t), v(x, t) = v(ξ) + χ(ξ, t),(4.1)

where ϕ and χ are linear perturbation terms. After substitution of (4.1) into (2.1) it
is straightforward to derive (

∂ϕ/∂t
∂χ/∂t

)
= L̂

(
ϕ
χ

)
,(4.2)

where

L̂ =

(
∂2
ξ + vu

−2e−1/u + c∂ξ e−1/u

−βvu−2e−1/u τ∂2
ξ − βe−1/u + c∂ξ

)
.(4.3)

The stability of the travelling front is then defined from the spectra of L̂. It is easy to
show that the essential spectrum of this operator always lies in the left half-plane and
therefore the discrete spectrum is solely responsible for the transition to instability
(see [24]). We will seek the solution of (4.2) of the form

ϕ(ξ, t) = ϕ(ξ)eλt, χ(ξ, t) = χ(ξ)eλt,(4.4)
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where λ is a spectral parameter (in combustion literature it is sometimes referred to
as the growth rate eigenvalue). Substituting (4.4) into (4.2) and introducing a vector
with the components z1 = ϕ, z2 = ϕξ, z3 = χ, z4 = χξ, we obtain the system of
ODE in the form

ż = Az,(4.5)

where

A(ξ, λ) =


0 1 0 0

λ− vu−2e−1/u −c −e−1/u 0
0 0 0 1

βτ−1vu−2e−1/u 0 τ−1(λ+ βe−1/u) −τ−1c

 .(4.6)

We use (4.5) to investigate the stability of the travelling front. Following [12], we
will say that the travelling front is linearly unstable if, for some fixed complex λ with
Re(λ) > 0, there exists a solution of (4.5) which decays exponentially as ξ → ±∞. We
will refer to this λ as an eigenvalue and to the corresponding solution as an eigenmode.

5. Evans function. Let us introduce the limit matrices

A±(λ) ≡ lim
ξ→±∞

A(ξ, λ).(5.1)

The explicit form of A± can be found from the boundary conditions (3.3). The limit
matrices have eigenvalues

µ−1,2(λ) =
−c∓√

c2+4λ
2 , µ+

1,2 = µ
−
1,2,

µ−3,4(λ) =
−c∓

√
c2+4τ(λ+βe−β)

2τ , µ+
3,4(λ) = µ

−
3,4(λ− βe−β),

(5.2)

with corresponding eigenvectors k±
i (for i = 1, . . . , 4). Equations (5.2) imply that

A− has two eigenvalues µ−2,4 with positive real parts and two eigenvalues µ−1,3 with

negative real parts. Similarly, for A+ we have Re(µ+
2,4) > 0 and Re(µ+

1,3) < 0.

Therefore, for any value of λ there exist two linearly independent solutions z−2,4(ξ, λ)
of (4.5) corresponding to unstable subspaces of A− satisfying the conditions

lim
ξ→−∞

exp(−µ−i ξ)z−i (ξ, λ) = k−
i , i = 2, 4,(5.3)

and two linearly independent solutions z+
1,3(ξ, λ) of (4.5) corresponding to stable sub-

spaces of A+ satisfying the conditions

lim
ξ→+∞

exp(−µ+
i ξ)z

+
i (ξ, λ) = k+

i , i = 1, 3.(5.4)

Now we can consider a space of solutions of (4.5) bounded as ξ → −∞ and a space of
solutions bounded as ξ → +∞. If these spaces intersect nontrivially for some value
λ, then λ is an eigenvalue. We will call the function which measures whether these
spaces intersect the Evans function. Geometrically this means that for some value
of λ and any value of coordinate ξ the plane defined by the vectors z−2,4 intersects

nontrivially with the plane defined by the vectors z+
1,3. We can also say that λ is

an eigenvalue if and only if the solutions z−2,4 and z+
1,3 are linearly dependent or,

equivalently, the Wronskian evaluated on these solutions (a matrix whose columns
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are z−2,4(ξ) and z
+
1,3(ξ)) is equal to zero. One of the Evans function definitions is given

in [15] via this Wronskian, which is evaluated for definiteness at ξ = 0. Let ei be
the orthonormal basis in four dimensional space C4 of system (4.5) solutions. In this
basis the vectors z±i have coordinates (z±i1, z

±
i2, z

±
i3, z

±
i4)

T , and the Evans function is
defined as

D(λ) =

∣∣∣∣∣∣∣∣∣
z−21(0, λ) z−41(0, λ) z+11(0, λ) z+31(0, λ)

z−22(0, λ) z−42(0, λ) z+12(0, λ) z+32(0, λ)

z−23(0, λ) z−43(0, λ) z+13(0, λ) z+33(0, λ)

z−24(0, λ) z−44(0, λ) z+14(0, λ) z+34(0, λ)

∣∣∣∣∣∣∣∣∣
.(5.5)

In what follows we will also require an alternative definition of the Evans function.
Returning to the geometrical picture, we can say that to find the eigenvalues we do not
have to seek the solutions z−2,4 and z

+
1,3, but it is sufficient to determine the orientation

of the planes, constructed on corresponding pairs of vectors, in space C4 of system
(4.5) solutions.

If we take two linear independent vectors in Cn, then the orientation of a plane
containing both vectors can be determined by a wedge product of them. (Two vectors
are linear dependent if and only if their wedge product is equal to zero.) If n = 3, a
wedge product coincides with a vector product, and the result of the operation is a
vector belonging to C3. However, in the general case the result of a wedge product of
two vectors is a vector lying in

∧2
(Cn), where

∧2
(Cn) is the second exterior power

of Cn. It has dimension dim[
∧2

(Cn)] = n!/2!(n− 2)!.
In our case a plane can be defined by a six component vector; for instance, we

define

V− = z−2 ∧ z−4 , V+ = z+
1 ∧ z+

3 ,(5.6)

where V± ∈ ∧2
(C4) and ∧ stands for wedge product. If λ is an eigenvalue, the planes

associated with the vectors V+ and V− intersect nontrivially. This means that V+

and V− are linear dependent and a wedge product V+ ∧V− equals zero. Now we
can make use of the Evans function definition given in [25] as

D̃(λ) = exp

[
−
∫ ξ

0

Tr(A(s, λ))

]
V+(ξ, λ) ∧V−(ξ, λ).(5.7)

For the sake of further consideration it is convenient to take ξ = 0 in the definition
(5.7). As was shown in [12], in this case we can rewrite (5.7) as

D̃(λ) = D(λ)Γ,(5.8)

where Γ = e1 ∧ e2 ∧ e3 ∧ e4 is a standard volume in C4 and

D(λ) = [V+,ΣV−].(5.9)

Here, the overline denotes the complex conjugate, [·, ·] is the complex inner product
in C6, and Σ is the operator that in a basis

v1 = e1 ∧ e2, v2 = e1 ∧ e3, v3 = e1 ∧ e4,
v4 = e2 ∧ e3, v5 = e2 ∧ e4, v6 = e3 ∧ e4,

(5.10)
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is represented by the matrix

Σ =


0 0 0 0 0 1
0 0 0 0 −1 0
0 0 0 1 0 0
0 0 1 0 0 0
0 −1 0 0 0 0
1 0 0 0 0 0

 .(5.11)

In the basis (5.10) the components of vector V− can be shown to be

V−
1 = z21z42 − z41z22, V−

4 = z22z43 − z42z23,
V−

2 = z21z43 − z41z23, V−
5 = z22z44 − z42z24,

V−
3 = z21z44 − z41z24, V−

6 = z23z44 − z43z24.
(5.12)

A similar relation holds for V+. Using these expressions for V±, we can show (by
means of direct substitution) that definitions (5.5) and (5.9) are identical.

The vectors V± can be also called the second compounds of the matrices formed
from a pair z−2,4 or z+

1,3, respectively, and were considered in [20, 21, 22] in relation
with the Orr–Sommerfeld equation. The definition (5.5) is the simpler of the two, but
the importance of the second definition (5.9) will be revealed in section 7.

6. Evans function for τ ∼ O(1) and β � 1. Let us return to the definition
(5.5) of the Evans function. In [15] it was shown that in the case of τ ∼ 1 and β � 1
the Evans function can be approximated analytically with good accuracy. In this
section we assume that τ = 1− β−1', where ' ∼ 1.

First, let us rewrite the spectral problem (4.2)–(4.3) for the operator L̂ in the
symmetric form. By introducing the variables ũ = βu, ṽ = v, ϕ̃ = βϕ, χ̃ = χ, and
the scaled coordinate z = cξ defined in section 3, we can obtain

L̂

(
ϕ̃
χ̃

)
= λ̃

(
ϕ̃
χ̃

)
,(6.1)

where λ̃ = λ/c2 and

L̂ =

(
∂2
z + ∂z + β

3Qṽũ−2eβ(1−1/ũ) β2Qeβ(1−1/ũ)

−β3Qṽũ−2eβ(1−1/ũ) τ∂2
z + ∂z − β2Qeβ(1−1/ũ)

)
.(6.2)

A similar type of equation was considered in [15]. The solutions z̃−2,4 and z̃+
1,3 of (6.1),

having the same meaning as in the previous section, were found. Using the definition
(5.5), the Evans function can be shown to be approximated in the limit β → ∞ as

D(λ̃, ') = 2Γ2(Γ− 1)− '(2λ̃− Γ + 1),(6.3)

where Γ =
√
1 + 4λ̃. As ' crosses 'c = 4(1+

√
3) ≈ 10.92, a pair of complex conjugate

eigenvalues ±iλ̃c, where λ̃c ≈ 0.6356, passes into the right half of the complex plane,
giving rise to a Hopf bifurcation. The same result was obtained in [4, 5] using the
matched asymptotic expansion. Now we can estimate the boundary of stability of the
planar front as β = 'c/(1 − τ) and the Hopf frequency λ = c2λ̃c. Unfortunately, we
cannot expect this prediction to be quantitatively accurate, because in the beginning
of the consideration it was assumed that ' ∼ O(1), whereas 'c has been found to be
much greater.
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7. Numerics and the compound matrix method. The method of calculat-
ing the Evans function was proposed in [19]. The idea is based on the definition (5.5).
According to (5.5) it is necessary to determine the solutions z−2,4 or z+

1,3 at ξ = 0.
In order to numerically trace the solution, for example, growing as we integrate for-
ward, the coordinate is exponentially scaled so as to eliminate the maximal rate of
exponential growth. However, the numerical algorithm introduced in [19] allows us to
find only the solutions which correspond to maximal (minimal) rates of exponential
growth (decay) as ξ → ±∞.

In our case we need to obtain two pairs of solutions: one pair bounded as ξ tends
to +∞, another as ξ → −∞ . Let us consider for definiteness ξ < 0. From the analysis
developed in section 5 it follows that system (4.5) has two solutions z−2,4 bounded as

ξ → −∞ and two solutions z−1,3 unbounded as ξ → −∞ which are of no interest. In

order to neglect z−1,3 we have to numerically integrate the system (4.5) from ξ = −l1
to ξ = 0 (where l1 is chosen sufficiently large). Integrating forward we can find only
z−4 , because µ

−
2 < µ−4 and the solution z−2 is always ruled out due to errors of the

numerical scheme. The same obstacles remain in the limit ξ → +∞. Systems with
this kind of behavior are called stiff. The stiffness makes the direct calculation using
(5.5) impossible, and some procedure of orthogonalization is required. The compound
matrix method, which we employed in order to avoid this type of difficulty, is described
below and will be seen to be closely related to the definition (5.9) introduced in section
5.

Let z1 and z2 be two solutions of (4.5); then the vector V = z1∧z2 is the solution
of the equation

V̇ = BV,(7.1)

where B is a 6 × 6 matrix whose elements can be found from the matrix A (see
[13, 20, 21, 22] for details). It can be shown that the eigenvalues s±i of B in the limits
ξ = ±∞ are given via eigenvalues µ±i of A± as

s±1 = µ±1 + µ±2 , s±4 = µ±2 + µ±3 ,
s±2 = µ±1 + µ±3 , s±5 = µ±2 + µ±4 ,
s±3 = µ±1 + µ±4 , s±6 = µ±3 + µ±4 .

(7.2)

Therefore V−(ξ), defined by (5.6), is the solution of (7.1) corresponding to the
largest rate of exponential growth s−5 as we integrate forward from ξ = −∞ to ξ = 0.
Similarly V+(ξ), defined by (5.6), is the solution of (7.1) corresponding to the largest
rate of exponential growth s+2 as we integrate backward from ξ = +∞ to ξ = 0. These
solutions can always be found numerically by means of the method introduced in [19],
and then we use definition (5.9) to calculate the Evans function numerically.

The problem of stability of the travelling front of (2.1) then reduces to the search
for zeros of the Evans function (5.9) located in the right half-plane. Zeros of D(λ)
can be calculated using an argument principle. The number of zeros in the right
half-plane equals the number of times the image of the imaginary axis under D(it),
t ∈ R, winds (wraps) around the origin. Graphs of D(it), t ∈ R, are called Nyquist
plots [19].

Figure 3 shows Nyquist plots for τ = 0.1 and β = 6.8, 7.026, 7.2. For β = 6.8 the
curve does not encircle the origin, and hence the travelling front is stable. Transition
to instability occurs for β = 7.026, when two complex conjugate eigenvalues cross
the imaginary axes and the curve passes through the origin three times. The front
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Fig. 3. Transition to instability. The image of the imaginary axis D(it) near the origin for
τ = 0.1 and for β = 6.8 (curve 1), 7.026 (curve 2), 7.2 (curve 3). Note that curve 1 does not
encircle the origin, curve 2 is the transition, and curve 3 encircles the origin two times.

is clearly unstable for β = 7.2, when the curve encircles the origin two times, and
therefore there are two points of discrete spectra in the right half-plane.

The Nyquist plot technique allows us to obtain the criterion of transition to
instability. Using this criterion, we can conclude whether the travelling front is stable
or not for some fixed parameter values. However, it is quite difficult to calculate the
critical parameter values. More detailed information can be collected by means of the
Newton–Raphson method, which we apply to the equation D(λ) = 0. This allows us
to locate the zeros of the Evans function on the complex plane for any given values
of β and τ . In Figure 4 it is shown how two complex conjugate eigenvalues move
from the left half-plane to the right half-plane, resulting in Hopf bifurcation at the
parameter values when λ is purely imaginary. To determine the critical value βc, when
a pair of eigenvalues is located exactly on the imaginary axis, we consider the equation
Reλ = 0 together with D(λ) = 0 and solve this system using the Newton–Raphson
method. We start the iteration process with appropriate guess values for λ and β.
We repeat the process until the zero is found with an accuracy of 10−12. This gives
us βc = 7.02609... for τ = 0.1. While searching for the zeros of the Evans function, we
checked the credibility of the method by decreasing the integration step by a factor
of four. This results in the variation of the critical value of β in the ninth significant
figure.

It is clear that we can use the procedure described above to find the dependence
of the critical value βc on τ . In Figure 5 the stability boundary is plotted in the
parameter plane (β, τ). In section 6 we showed that as we increase τ towards 1,
the corresponding value βc tends to infinity. At the same time, according to (3.17)
and the results of section 6, the speed of the front and the Hopf frequency tends
to zero. As a result, the travelling front becomes flatter, and we should infinitely
increase the interval of integration. For example, when τ = 0.6, the critical values
become βc = 21.087, c = 9.509 × 10−6, λc = 6.969 × 10−11, and the interval of
integration is about 106. In addition, it is numerically difficult to trace such small
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Fig. 4. The spectra of operator L̂ for τ = 0.1 and β in the range [6.8, 7.2]. Curves 1 denote
the location of eigenvalues for different values of β. Curve 2 is the boundary of the region where the
essential spectrum lies. The value of β at which curves 1 pass through the imaginary axis gives the
critical value βc.
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Fig. 5. Stability boundary βc(τ). Dots connected with a thin solid curve are the results of nu-
merical calculations based on the Evans function. Other lines represent the analytical predictions ob-
tained with (1) dash line—Evans function asymptotic from section 6, (2) dash-dot line—truncation
model, (3) thick solid line—generalized MAE.

values of λc. This implies that we can find the boundary of stability only on the
interval τ ∈ [0, 0.6]. As a result, it is extremely difficult to verify the asymptotic
formula for βc(τ) derived in section 6, as this is valid for τ ∼ 1. In Figure 5 we
also plot the prediction obtained with the truncation model [9]. As can be seen, the
discrepancy between the theoretical and numerical results is large for both asymptotic
models. The generalized MAE developed in [9] gives the best correspondence with
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Fig. 6. The logarithm of the Hopf frequency as a function of τ . Dots connected with a thin
solid curve correspond to numerical results. Other lines represent the analytical predictions obtained
with (1) dash line—Evans function asymptotic from section 6, (2) dash-dot line—truncation model,
(3) thick solid line—generalized MAE.

the numerical data for τ ∈ [0.1, 0.5]. In Figure 6 we plot the logarithm of the Hopf
frequency as a function of τ for β = βc. As in the previous figure, the generalized
MAE estimation best fits the numerical results.

Finally, using the compound matrix method, we can find the eigenmodes of the
system (4.2)–(4.3) by inverting the relations (5.12) for V− and similarly for V+. In
Figures 7 and 8 we show the eigenmodes obtained for τ = 0.3 for the critical value
βc = 9.7404, when two eigenvalues lie on the imaginary axis. These eigenmodes can
be used, for example, in perturbation analysis when we want to investigate properties
of the solution, bifurcating from the steady propagating front (see [24] for details).

8. Conclusion. The speed of planar combustion fronts was investigated using
the shooting and relaxation methods for different values of Lewis number and different
values of β (the ratio of the activation energy to heat release). We have compared the
numerical results with the asymptotic estimation of the speed of the combustion front.
Derivation of the speed estimation is given in section 3 and agrees with the results of
[5, 7, 8]. The correspondence between the numerical and analytical results is good for
large β and τ ∼ 1, whereas for moderate values of β the difference becomes significant.
This is expected, as the asymptotic formula for speed of the front was derived in the
leading order of the asymptotic expansion with β being a small parameter. It is also
important to note that as we decrease the value of τ up to the order of β−1 the
asymptotic prediction of the front speed becomes unsatisfactory even for sufficiently
large values of β. This reveals the fact that, in the asymptotic treatment of the
problem, τ was considered to be of the order of units, and therefore the asymptotic
approach fails to work for τ ∼ β−1. It is interesting to note that the dependence of
speed on β seems to be correct, whereas the dependence of c on τ is valid only for τ ∼ 1.
Excellent correspondence of the numerical results obtained with the integration of the
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Fig. 7. The eigenmode ϕ(ξ) of the system (4.2)–(4.3) for τ = 0.3, β = βc = 9.7404, and purely
complex eigenvalue λ = iλc. The solid line corresponds to Re ϕ, and the dashed line denotes Im ϕ.
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Fig. 8. The eigenmode χ(ξ) of the system (4.2)–(4.3) for τ = 0.3, β = βc = 9.7404, and purely
complex eigenvalue λ = iλc. The solid line corresponds to Re χ, and the dashed line denotes Im χ.

governing PDE and corresponding ODE supports the credibility of both methods (the
difference was found in the third significant digit). At the same time, we believe that
the shooting and relaxation methods are preferable, as they require fewer computer
resources, are more accurate, and do not depend on the stability of the solution.

The Evans function method was employed to examine the linear stability problem.
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In this paper we consider only pulsating instabilities. Methods used in this paper are
able to treat cellular instabilities as well (see [14]), and this is the subject of a separate
paper. It was shown in section 7 that the conventional method for calculating the
Evans function fails in our case. We demonstrated that the compound matrix method
significantly expands the applicability of the Evans function approach. The results
obtained with the compound matrix method were compared to the predictions of the
asymptotic models. It appears that classic asymptotic models derived with truncated
series are able to give only qualitative behavior for the front stability. We cannot
expect the model derived in [4, 5] to give good quantitative results for τ ∈ [0, 0.6]
considered in this paper, as it is valid for τ � 1. We would like to mention that
it is very difficult to check the results of the asymptotic analysis for τ → 1 both
numerically and experimentally, because the pulsating instability manifests itself only
for extremely large values of β in this case. To the best of our knowledge β values of
less than 30, considered in this paper while analyzing the stability of the travelling
front, cover most of the combustion reactions. It turns out that the results obtained
with the generalized matched asymptotic expansion method in [9] best correspond to
the numerical data found in the present paper.

The compound matrix method not only allowed us to obtain a simple numerical
criterion for the transition to instability for steady propagating solutions, but also
provided us with more detailed information about the eigenvalues and eigenmodes.
We located the eigenvalues, responsible for transition to instability, on the complex
plane and found corresponding eigenmodes for the linear stability problem. This
information can be useful, for example, in the analysis of the bifurcating solutions
and their stability.

Finally, we would like to say a few words regarding the ambient temperature,
which was taken to be equal to zero in this paper. The main disadvantage of this
approach is the fact that the ambient temperature is a convenient control parameter
used in experiments. This parameter is also ruled out in the asymptotic theories
mentioned earlier. Therefore it is of clear interest to investigate the effect of this
parameter on the stability of the combustion front. In the future we will be applying
the methods described in this paper to models with finite ambient temperature and
taking heat loss into consideration.
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