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In this paper we investigate the linear stability and properties of the planar trav-
elling non-adiabatic combustion front for the cases of zero and non-zero ambient
temperature. The speed of the front is estimated numerically using the shooting and
relaxation methods. It is shown that for given parameter values the solution either
does not exist or there are two solutions with different values of the front speed,
which are referred to as ‘fast’ and ‘slow’. The Evans function approach extended by
the compound-matrix method is employed to numerically solve the linear-stability
problem for the travelling-wave solution. We demonstrate that the ‘slow’ branch of
the solutions is unstable, whereas the ‘fast’ branch can be stable or exhibits Hopf or
Bogdanov–Takens instability, depending on the parameter values.
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1. Introduction

The reaction–diffusion models describing the propagation of combustion waves have
been the subject of study for a long time (Merzhanov & Rumanov 1999). Much
effort has been invested into understanding the properties of the stationary propa-
gating fronts and their stability. The main focus of this paper is the investigation of
the properties and stability of the steady planar combustion waves with respect to
pulsating (longitudinal) perturbations. This allows a one-dimensional (1D) formula-
tion of the propagation problem and is convenient for both analytical and numer-
ical treatment. It is also a physically reasonable problem to investigate, since pul-
sating instabilities represent a distinct mechanism for the loss of stability of the
travelling-wave solution (Merzhanov & Rumanov 1999). Indeed, as shown in Mar-
golis & Matkowsky (1983) and Margolis (1991), the geometrical parameters of the
system can be chosen in such a way that the transverse instabilities can be excluded.
Moreover, pulsating and cellular instabilities manifest themselves in different disjoint
domains in the space of the reaction parameters (Merzhanov & Rumanov 1999).
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Namely, pulsating instabilities have been observed for the values of the Lewis num-
ber (Le) greater than 1, whereas cellular instabilities are known to appear for the
values of the Lewis number smaller than 1 (Merzhanov & Rumanov 1999). For this
reason, the mechanism leading to cellular waves is also excluded by an appropriate
choice of the parameters (i.e. for a Lewis number greater than 1, which is the case
in this paper). Finally, the experimental observation of the pulsating waves in self-
propagating high-temperature synthesis (SHS) (Moore & Feng 1995a, b; Merzhanov
& Rumanov 1999; Makino 2001) is probably the best evidence that, under certain
conditions, longitudinal instabilities are the dominant way in which a planar wave
can lose its stability. As noted in Makino (2001) pulsating combustion frequently
occurs in experiments on SHS leading to a layered structure of the resulting mate-
rials, which is often an undesirable effect. This makes the study and control of the
transition from steady to pulsating combustion a subject of great practical impor-
tance.

Consideration of the propagation problem in 1D configuration, which is used
throughout this paper, is not new. It has been used in a number of papers to predict
and to investigate phenomena such as pulsating waves (Matkowsky & Sivashinsky
1978; Matkowsky & Olagunju 1980; Margolis 1991), period doubling in the oscil-
lations of speed (Shkadinskii et al . 1971; Weber et al . 1997) and chaotic flames
(Bayliss & Matkowsky 1990; Margolis 1991; Brailovsky & Sivashinsky 1993; Frankel
et al . 1994).

The standard model describing the propagation of combustion waves involves the
reaction–diffusion equations for two components: the temperature, and the amount
of fuel, with Arrhenius reaction terms giving the strong nonlinear dependence of the
reaction rate on the temperature (Margolis & Matkowsky 1983; Schult 1999). For
the sake of simplicity, the effect of heat exchange with the media surrounding the
system is usually neglected.

The analytical investigation of the adiabatic case is based upon the application of
the matched asymptotic expansion (MAE) method, which allows one to describe the
properties of the steady solution, such as speed, in a consistent way in the limit of
large activation energy (Bush & Fendell 1970; Margolis & Matkowsky 1983). How-
ever, the analysis of the linear-stability problem using the MAE method encounters
difficulties known as the closure problem (Margolis & Matkowsky 1983; Schult 1999).
There are several different ways to circumvent this, including the truncated series
or using the nearly equidiffusional approximation (Margolis & Matkowsky 1983).
The latter method requires the Lewis number to be asymptotically close to unity,
whereas the truncated models were derived for general values of the Lewis number.
The systems described above are usually investigated by numerically solving the
partial differential equations (PDEs) (Weber et al . 1997). This allows one to analyse
both the stationary solution and its stability. However, it requires sufficiently large
computational resources in comparison with the formulation of the problem using
ordinary differential equations (ODEs). In addition, the ODE formulation of the
problem has the advantage of being more accurate and providing more details about
the system under consideration. In Gubernov et al . (2003) the properties of the
steady adiabatic front were investigated and the linear-stability problem was solved
in the ODE formulation using the Evans function method. This approach has been
previously applied to different nonlinear PDE stability analysis (Sandstede 2002).
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However, the adiabatic approximation narrows the applicability of the model in the
real world, where taking into consideration the heat loss sometimes seems to be essen-
tial. In the present work we address a long-standing problem (Joulin & Clavin 1979;
Booty et al . 1987), which includes the effect of heat exchange with the surroundings
on the propagation of combustion waves. One of the main differences between the
adiabatic and non-adiabatic approximation is that the stationary solution does not
always exist. The values of the heat loss for which the solution exists are relatively
small in comparison with other terms in the governing equations and the temper-
ature of the travelling front decays very slowly in the product zone. For analytical
investigation using the MAE in the limit of high activation energy, this means that in
order to take into account the effects of the heat loss, we cannot truncate the expan-
sion on the leading-order terms (as was done in the adiabatic case), but we have to
consider higher-order terms as well (see Joulin & Clavin (1979), where the properties
of the stationary solution were studied for arbitrary values of the Lewis number).
Nevertheless, the residual amount of fuel left behind the front cannot be found using
the MAE in the limit of high activation energy. However, this difficulty was overcome
in the opposite limit of strongly exothermic combustion waves (Billingham & Mercer
2001). For the linear-stability analysis the closure problem can be circumvented only
in the nearly equidiffusional limit (Joulin & Clavin 1979). For the general parameter
values both the steady solution and its stability can only be investigated numerically.

The numerical analysis of the problem in the PDE formulation (Mercer et al . 1998)
encounters serious obstacles. Firstly, it is very difficult to follow the solution profile
in the product zone and, therefore, the dependence of the residual amount of fuel
on the parameters of the problem is not easy to ascertain. Secondly, PDE methods
are unable to investigate the stationary solutions once they have become unstable.
In this paper we take advantage of the ODE formulation of the problem, which
is usually more convenient for numerical analysis. Besides the benefits of technical
implementation, an ODE formulation does not depend on the stability of the travel-
ling wave and therefore allows us to continue the solution over a broader parameter
range (including the investigation of the slow solution branch, which is impossible
in the PDE formulation). Also, using the ODE approach we are able to investigate
the dependence of the residual amount of fuel on the system parameters. To the
best of our knowledge, this has not been done for moderate and large values of the
activation energy neither analytically, using MAE, nor numerically, employing the
PDE integration, for the reasons mentioned above.

The numerical-stability analysis was carried out previously by direct integration
of the governing PDEs (Mercer et al . 1998). This method can be used in order to
determine the neutral stability boundary for the steady wave. However, as is noted in
Gubernov et al . (2003), we cannot expect this method to be accurate near the critical
parameter values, where the rate of instability is weak and a long integration time is
needed to detect it. This is especially true for the monotonic scenario of transition to
instability (in contrast to the oscillatory scenario via Hopf bifurcation). In addition
to this, PDE methods are unable to investigate the stationary solutions once they
have become unstable. Therefore, the information about the behaviour of eigenvalues
in the right half-plane after the transition to instability cannot be investigated using
this approach. The examination of the eigenvalues of the unstable steady solution
is of interest, since it can indicate the Bogdanov–Takens bifurcation, which explains
the transition from the onset of monotonous to oscillating instabilities. This bifurca-
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tion was predicted analytically by means of MAE (Joulin & Clavin 1979). However,
the MAE approach is only valid for asymptotically large values of the activation
energy and values of the Lewis number asymptotically close to unity. Of interest
here is to investigate the behaviour of eigenvalues in the right half-plane for moder-
ate values of parameters. This study was conducted in the present paper by using the
Evans function approach, developed in Gubernov et al . (2003) for the adiabatic case.
However, this method cannot be implemented directly for the problem under inves-
tigation, since the heat exchange with the surroundings imposes additional technical
difficulties. The difference in the characteristic coordinate length, in which the solu-
tion changes significantly in the preheat, reaction and product zones is substantially
larger in the non-adiabatic case than it was in the model without heat loss consid-
ered in Gubernov et al . (2003). Therefore, all the numerical algorithms have been
modified to take into account this difference by using a non-uniform coordinate grid.

We note here that, strictly speaking, the presence of the zero eigenvalue due to
the shift symmetry violates the assumptions of the classical Hopf and Bogdanov–
Takens bifurcation theorems. This degeneracy requires a special study and lies
beyond the scope of this paper. However, here we use the terms Hopf and Bogdanov–
Takens bifurcation following the standard practice in combustion literature (Bayliss
& Matkowsky 1990; Brailovsky & Sivashinsky 1993; Frankel et al . 1994).

Inclusion of the heat loss in the model makes it more realistic; however, one of the
most straightforward control parameters in experiments is the ambient temperature.
The effect of the ambient temperature on combustion processes is usually investi-
gated when considering ignition problems (Weber et al . 1998; Watt et al . 1999).
However, this issue has received little attention in the context of propagation prob-
lems, although there are experimental data showing the effect of the variation of
the ambient temperature on the properties and the stability of the steady planar
combustion waves in SHS (Moore & Feng 1995a, b; Makino 2001). Ambient tem-
perature is implicitly included in parameters for many combustion studies via the
Zeldovich number. Analytical investigation of the flame propagation usually uses
asymptotic methods, which require the Zeldovich number to be asymptotically large
(Schult 1999). As a result the ambient temperature does not appear in the final
results of the asymptotic analysis. On the other hand, the standard choice of non-
dimensional parameters is not convenient for numerical studies either and, to the
best of our knowledge, the effect of the ambient temperature on the propagation of
combustion waves has not been systematically investigated by means of numerical
analysis. In this paper, following Weber et al . (1997), we use a model which com-
bines the ambient temperature with other dimensional parameters in a manner that
makes the effect of the ambient temperature explicit. This allows us to carry out the
numerical investigation of the effect of the ambient temperature on propagation of
combustion waves.

This paper is essentially divided into two parts. In the first part we investigate the
properties of the stationary propagating solution numerically employing the shoot-
ing and relaxation methods. The linear-stability analysis is the focus of the second
part. In both of these parts, we examine the behaviour of the system for zero and
non-zero ambient temperature. We use the Evans function method (extended by the
compound-matrix method) to determine the stability of the non-adiabatic combus-
tion fronts.
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2. Model

We consider a premixed fuel in one dimension. It is assumed that the rate of exother-
mic combustion is well described by the Arrhenius law. In non-dimensional coordin-
ates, the equations governing this process can be found in Weber et al . (1997) and
are given as

ut = uxx + ve−1/u − l(u − ua), vt = τvxx − βve−1/u, (2.1)

where u and v are non-dimensional temperature and the mass fraction of fuel, respec-
tively, τ is the inverse Lewis number (the ratio of the diffusion rates of mass and
heat), β is the ratio of the activation energy to heat release, l is the heat-loss coeffi-
cient from fuel to surroundings and ua is the ambient temperature.

We consider the ambient temperature to be a small quantity in the current non-
dimensional variables. This approximation is quite feasible for propagation problems.
In experiments the dimensionless ambient temperature usually varies between 0 and
0.03 (Makino 2001). Parameter τ varies from 0 (Le → ∞) for solid fuel, to unity
(Le = 1) for gaseous fuels. The parameter β is of the order of unity or larger. The
heat loss l is a parameter which can be manipulated in the laboratory. In order for
stationary solutions to exist, l must be taken to be sufficiently small, as will be seen
in the next section.

We consider system (2.1) subject to the following boundary conditions.

u(x, t) → ua, vx(x, t) → 0, as x → −∞,

u(x, t) → ua, v(x, t) → 1, as x → +∞.

On the right boundary we have a cold (u = ua) and unburned (v = 1) state,
whereas the opposite limit corresponds to a partly burned (v = σ) state, where the
temperature is cooling down to the ambient value (u = ua). Here σ is the residual
amount of fuel left after the combustion wave (σ = 0 for the adiabatic case).

3. Travelling-wave solution

In this section we investigate the properties of the travelling solution. We first study
the case where ua = 0 and then we show how the non-zero ambient temperature
alters these results.

(a) Zero ambient temperature (ua = 0)

We will seek the solution of (2.1) in a form of the front travelling with a constant
speed c

u(x, t) = u(ξ), v(x, t) = v(ξ), (3.1)

where we have introduced a moving coordinate frame ξ = x − ct. After substituting
(3.1) into (2.1) it is easy to obtain two second-order differential equations

uξξ + cuξ + ve−1/u − lu = 0, τvξξ + cvξ − βve−1/u = 0, (3.2)

and boundary conditions

u = 0, vξ = 0, as ξ → −∞,

u = 0, v = 1, as x → +∞.

}
(3.3)
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Equations similar to (3.2), (3.3) were considered analytically in Joulin & Clavin
(1979) based on the MAE method with β−1 as a small parameter. It was assumed
that all the fuel had been consumed and that there was no reaction in the product
zone. In the second order of the asymptotic procedure, the following expression for
the speed of the front was obtained

c2 = c2
ade−2βl/c2

, (3.4)

where

cad =
√

2
τβ

e−β/2 (3.5)

is the adiabatic flame speed (l = 0), which can be derived in the first order of the
MAE (Margolis & Matkowsky 1983). The flame speed estimation (3.4) is valid for
arbitrary values of τ (the inverse Lewis number) and β � 1. The formula for a speed
of the front (3.4) reveals the drastic difference in comparison with the adiabatic
problem. Namely, for fixed parameter τ there is a critical value of βele such that
the steady propagating front solutions exist for βl less than the critical value, and
do not exist for greater values of βl. This effect is called extinction (sometimes this
event is called a saddle-node or a blue-sky bifurcation or a turning point) and we use
subscript ‘e’ for the notation of the critical-parameter values, which can be found
from (3.4) by solving the equation

∂(βl)
∂c

= 2c ln
(

cad

c

)
− c = 0. (3.6)

This results in the following equation for the critical heat loss

le(β, τ) =
e−1−β

τβ2 . (3.7)

For fixed values of β, τ and l < le there exist two solutions with different speed, a
‘fast’ and a ‘slow’ solution.

We solve equations (3.2), (3.3) numerically by using the shooting method to obtain
the guess solution and then the results are corrected with a more accurate method,
namely, relaxation. However, as we have mentioned above, there is a great difference
between numerical integration of the adiabatic and non-adiabatic problems. It follows
from (3.7) that the solution exists only if the heat loss is sufficiently small. On the
other hand, in the product zone the rate of the exponential decay of the temperature
to zero is governed by l. This implies that in order to determine the stationary front
numerically one has to follow the slowly decaying tails in the product zone, followed
by a very rapid jump in the temperature and the amount of fuel in the reaction
zone, and finally relatively fast decay in the preheat zone. Therefore, in contrast to
the adiabatic problem (Gubernov et al . 2003), we use a non-uniform mesh along
the l < le coordinate. The fifth-order Runge–Kutta method with the adaptive step-
size control is employed for the shooting method. The method not only allows the
estimation of the local error, which has been set to be 10−5 in our calculations, but
at the same time it produces the non-uniform grid on the interval of integration. The
relaxation method has been modified in order to deal with the non-uniform grids.
The stability analysis of the steady propagating combustion front carried out in the
following sections is based on the accuracy of our approximation of the solution to
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Figure 1. Numerically determined speed of the travelling front as
a function of β and ln l for τ = 0.5.
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Figure 2. Speed of the travelling front as a function of l for τ = 0.5 and four different values of
β: curves 1 correspond to β = 3.0, curves 2 to β = 4.0, curves 3 to β = 5.0, and curves 4 to
β = 6.0. Dots connected with solid lines represent the numerical results obtained with shooting
and relaxation methods, whereas dashed lines were plotted according to the formula (3.4).

equation (3.2). The relaxation routine allows us to control the average local correction
made on each iteration step. The solution is considered to be resolved if the correction
is less than 10−15. In figure 1 we plot the dependence of the speed of the front on
β and l for fixed value of τ = 0.5. The surface looks like a bent page and has a
clear edge viewed from the outermost corner of the coordinate box. In figure 2 we
plot several cross-sections of the surface c(β, l) by the planes β = 3, 4, 5, 6. We see
that for fixed β and some value of le the derivative ∂c/∂l becomes infinite. This le
corresponds to extinction. There are two stationary propagating fronts for l < le and
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Figure 3. Dependence of the extinction value of l on β for different values of τ : curves 1 for
τ = 0.1, curves 2 for τ = 0.5, and curves 3 for τ = 1.0. Dots connected with solid lines
correspond to numerical results. Dashed lines were plotted according to (3.7).

there are no solutions for l > le. We have also plotted the prediction of the asymptotic
formula (3.4) on the same figure. As can be seen the results obtained from the MAE
method provide only qualitative behaviour of the system and the parameter values
at the point of extinction are poorly approximated by (3.7). In figure 3 we plot the
extinction values of heat loss as a function of β for several values of τ . The numerical
results have been obtained by solving the equation ∂β/∂c = 0 using the Newton–
Raphson method for fixed l. The critical value of β is considered to be resolved if
the derivative is less than 10−8. The difference between the numerical data and the
prediction of (3.7) is substantial for small and moderate values of β. For large values
of β the discrepancy is small, especially when τ = 1. This is expected since the MAE
is valid for large values of β and higher-order terms of the expansion would need to
be considered to give a better correspondence with the numerical results.

Finally, in figure 4 the dependence of the residual amount of fuel σ on l is presented
for different values of β. The larger values of σ correspond to the slow branch of the
solution for each curve. It should be noted that according to the analysis in Joulin
& Clavin (1979) the residual amount of fuel left behind the front can be neglected.
From figure 4, this can be done for the fast branch; however, σ becomes crucial when
considering slow solutions.

(b) Non-zero ambient temperature (ua > 0)

Next we apply the numerical methods described earlier, to investigate the effect of
ambient temperature on the system and compare the results with the ua = 0 case.

Firstly, we investigate the dependence of the speed of the front on the ambient
temperature. In figure 5 the flame speed is shown as a function of the logarithm
of the heat loss for fixed values of β and τ and different values of ua, as indicated
in the caption. As we increase the ambient temperature for fixed values of β, τ ,
and l the speed of the front rises. This result is in qualitative agreement with the
experimental data (Makino 2001). It is interesting to note that as we increase ua the
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Figure 4. Numerically determined residual amount of fuel behind the reaction front
as a function of l for τ = 0.5 and four different values of β = 3, 4, 5, 6.

0.20

0.15

0.10

0.05

0

c

−5.0 −4.5 −4.0 −3.5 −3.0 −2.5
log l

3
2

1

Figure 5. Speed of the travelling front as a function of l for τ = 0.5, β = 3 and different values
of ua: curve 1 corresponds to ua = 0, curve 2 to ua = 0.005, curve 3 to ua = 0.01. These results
were obtained with shooting and relaxation methods.

point of extinction moves towards larger values of heat loss resulting in an increase in
the region of parameter values for which the travelling-wave solution exists. This is
clearly seen in figure 6, where we plot the extinction values of heat loss as a function
of β for τ = 0.5 and for different values of ua.

It is clear from the non-zero ambient temperature results that the overall qual-
itative behaviour is the same as for the zero ambient temperature approximation
that is often used to circumvent the so-called cold boundary problem. For problems
where quantitative results are required obviously a non-zero ambient temperature is
needed.

Next we proceed to the investigation of the stability of the travelling combustion
wave.
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Figure 6. Dependence of the extinction value of l on β for τ = 0.5 and different values of ua:
curve 1 for ua = 0, curve 2 for ua = 0.005 and curve 3 for ua = 0.01. These results were obtained
numerically.

4. Stability of the travelling front

As a first step in the analysis of the travelling-wave stability we linearize (2.1) around
the front solution (3.1)

u(x, t) = u(ξ) + ϕ(ξ, t), v(x, t) = v(ξ) + χ(ξ, t), (4.1)

where ϕ and χ are linear perturbation terms. After substitution of (4.1) into (2.1) it
is straightforward to derive (

∂ϕ/∂t
∂χ/∂t

)
= L̂

(
ϕ
χ

)
, (4.2)

where

L̂ =
(

∂2
ξ + vu−2e−1/u + c∂ξ − l e−1/u

−βvu−2e−1/u τ∂2
ξ − βe−1/u + c∂ξ

)
. (4.3)

The stability of the travelling front is then defined from the spectrum of L̂. It
is easy to show that the essential spectrum of this operator always lies in the left
half-plane (see Henry 1981; Volpert et al . 1994). In order to do this we consider the
limiting operators L̂± = limξ→±∞ L̂. It can be shown that the essential spectrum of
L̂± consists of algebraic curves

λ1(k) = −k2 + ick − l, λ2(k) = −τk2 + ick, (4.4)

where k ∈ (−∞, +∞), which are located in the left half-plane symmetric about the
real axis. The second curve in (4.4) includes the origin. Suppose that K is the union
of the regions inside or on these curves, so that C\K contains the right half-plane.
Then, according to Henry (1981), the essential spectrum of L̂ is contained in K, and
in particular includes curves (4.4). Therefore, the essential spectrum of L̂ lies in the
left half-plane (including the origin) and the discrete spectrum is solely responsible
for the transition to instability. We will seek the solution of (4.2) of the form

ϕ(ξ, t) = ϕ(ξ)eλt, χ(ξ, t) = χ(ξ)eλt, (4.5)
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where λ is a spectral parameter (in combustion literature it is sometimes referred to
as the growth-rate eigenvalue). Substituting (4.5) into (4.2) and introducing a vector
with components z1 = ϕ, z2 = ϕξ, z3 = χ, z4 = χξ, we obtain a system of ODEs in
the form

ż = Az, (4.6)

where

A(ξ, λ) =

⎛
⎜⎜⎝

0 1 0 0
λ + l − vu−2e−1/u −c −e−1/u 0

0 0 0 1
βτ−1vu−2e−1/u 0 τ−1(λ + βe−1/u) −τ−1c

⎞
⎟⎟⎠ . (4.7)

We use equation (4.6) to investigate the stability of the travelling front. Following
Afendikov & Bridges (2001), we will say that the travelling front is linearly unstable
if, for some fixed complex λ with Re(λ) > 0, there exists a solution of (4.6) which
decays exponentially as ξ → ±∞. We will refer to this λ as an eigenvalue and to the
corresponding solution as an eigenmode.

5. Matched asymptotic analysis for the linear-stability
problem (ua = 0)

The linear-stability problem (4.2), (4.3) is considered in Joulin & Clavin (1979) and
Booty et al . (1987) in the framework of the MAE method. We would like to briefly
quote the main results which are relevant to our work here.

The solution to (4.2), (4.3) together with the parameters of the system is sought in
the form of the series with β−1 being a small parameter of the asymptotic procedure.
Substituting these expansions into (4.2), (4.3) and collecting terms of the same order
as the small parameter we can obtain a separate problem in the leading order, first
order, etc. However, it is immediately evident that these equations result in the
so-called closure problem. We see that the leading-order problem is related to the
first-order problem. Similarly, the solution of the first-order problem will depend
on the second-order problem, etc. In other words, to find the leading-order solution
we have to investigate the infinite number of problems arising in each step of the
asymptotic expansion.

To circumvent the closure problem for the adiabatic system the truncation of
the series is made in such a way so as to take into account only the leading-order
terms of the asymptotic expansion (Margolis & Matkowsky 1983). However, for the
non-adiabatic case this approach is not applicable, since the heat-loss term manifests
itself only in the first order of the expansion. This implies that the first-order problem
has to be solved. However, the solution of this problem is by itself challenging and
is subject to technical difficulties. To the best of our knowledge it has not been
considered in the relevant literature.

The only way to circumvent the closure problem is to put τ0 = 1 (nearly equidif-
fusional) following Joulin & Clavin (1979) and Booty et al . (1987). In this case the
equation relating the leading-order spectral parameter with the parameters of the
problem can be derived, namely

Γ 2 − h(Γ + 1) = 1
4τ1(1 − Γ ), (5.1)
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where Γ =
√

1 + 4λ, h = βlc−2, and τ1 is the first-order term in the asymptotic
expansion τ = 1 + β−1τ1 + · · · . It is worthwhile to note that the point of extinction
corresponds to h = 1/2. Then h < 1/2 corresponds to the fast branch, whereas
h > 1/2 refers to the slow branch. Simple algebraic manipulation of (5.1) shows that
there is always one solution with Im(λ) = 0 and Re(λ) > 0 for the slow branch
(h > 1/2), therefore the slow fronts are always unstable (or in other words, a single
point of the discrete spectrum located on the right half-plane). When −6 < τ1 < 0
this point moves along the real axis and crosses the origin at the point of extinction
(h = 1/2) as we go from the slow to the fast branch, so that the fast fronts are
stable for −6 < τ1 < 0. When τ1 < −6 the system exhibits a different bifurcation,
namely, that as we move along the slow branch (h > 1/2) towards the extinction
limit (h = 1/2), another point of discrete spectrum moves along the real axis from
the left half-plane to the right half-plane, and it crosses the origin at the critical val-
ues of parameters, corresponding to the extinction (3.7). Immediately after passing
from the slow to the fast branch, there are two points of discrete spectrum in the
right half-plane, both located on the real axis, and the solution is unstable. Next, as
we change the parameters of the system so as to remain on the fast branch, a pair of
points of the discrete spectrum collides when the line h1(τ1) = −2 + τ1/4 +

√
4 − 2τ1

is crossed in the parameter space. After the collision h < h1 the points of discrete
spectrum diverge symmetrically from the real axis, giving rise to oscillatory instabil-
ity. Finally, when h2(τ1) = τ1/4 − 1 +

√
3 − τ1 is crossed, the system exhibits Hopf

bifurcation and the solution becomes stable for h < h2. It is important to note here
(and this was mentioned earlier) that, although this is not exactly the classical Hopf
bifurcation, due to the presence of the zero eigenvalue as a result of shift symmetry,
in combustion literature it is often still termed Hopf bifurcation, since it results in
oscillatory solutions.

6. Evans function method for the linear-stability problem

In this section we return to the linear-stability problem (4.6), (4.7). Let us introduce
the limit matrix

A(λ) ≡ lim
ξ→±∞

A(ξ, λ). (6.1)

The explicit form of A can be found from the boundary conditions (3.3). The limit
matrix has eigenvalues

µ1,2(λ) =
−c ∓

√
c2 + 4λτ

2τ
, µ3,4(λ) =

−c ∓
√

c2 + 4(λ + l)
2

, (6.2)

with corresponding eigenvectors

k1,2 =
1√

1 + µ2
1,2

(0, 0, 1, µ1,2)
T, k3,4 =

1√
1 + µ2

3,4

(1, µ3,4, 0, 0)T, (6.3)

where T stands for transposition. Equations (6.2) imply that A has two eigenval-
ues µ2,4 with positive real parts and two eigenvalues µ1,3 with negative real parts.
Therefore, for any value of λ there exist two linearly independent solutions z2,4(ξ, λ)
of (4.6) corresponding to the unstable subspace of A satisfying the conditions

lim
ξ→−∞

exp(−µiξ)zi(ξ, λ) = ki, i = 2, 4. (6.4)
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and two linearly independent solutions z1,3(ξ, λ) of (4.6) corresponding to the stable
subspace of A satisfying the conditions

lim
ξ→+∞

exp(−µiξ)zi(ξ, λ) = ki, i = 1, 3. (6.5)

In a similar manner to that described in Gubernov et al . (2003), we can consider a
space of solutions of (4.6) bounded as ξ → −∞ and a space of solutions bounded
as ξ → +∞. If these spaces intersect non-trivially for some value λ, then λ is an
eigenvalue. We will call the function which measures whether these spaces intersect
the Evans function. Geometrically, this means that for some value of λ and any
value of coordinate ξ the plane defined by the vectors z2,4 intersects non-trivially
with the plane defined by the vectors z1,3. We can also say that λ is an eigenvalue
if and only if the solutions z2,4 and z1,3 are linearly dependent or, equivalently,
the Wronskian evaluated on these solutions (a matrix whose columns are z2,4(ξ)
and z1,3(ξ)) is equal to zero. Now we define the Evans function via this Wronskian,
which is evaluated for definiteness at ξ = 0. Let ei be the orthonormal basis in
four-dimensional space C4 of system (4.6) solutions. In this basis the vectors zi have
coordinates (zi,1,zi,2,zi,3,zi,4)T and the Evans function is defined as

D(λ) = 1
4µ∗

1µ
∗
3

⎡
⎢⎢⎢⎢⎣

z−
21(0, λ) z−

41(0, λ) z+
11(0, λ) z+

31(0, λ)

z−
22(0, λ) z−

42(0, λ) z+
12(0, λ) z+

32(0, λ)

z−
23(0, λ) z−

43(0, λ) z+
13(0, λ) z+

33(0, λ)

z−
24(0, λ) z−

44(0, λ) z+
14(0, λ) z+

34(0, λ)

⎤
⎥⎥⎥⎥⎦ , (6.6)

where star denotes complex conjugation. The coefficient in front of the determinant
in (6.6) is chosen in such a way that D(λ) → 1 as |λ| → ∞, Re(λ) > 0.

7. Numerical results

The numerical method for determining the Evans function is described in detail in
Gubernov et al . (2003). It uses the compound-matrix method to eliminate the stiff-
ness of the linear-stability problem (4.6), (4.7). However, there is a difference between
the algorithm employed in this paper and the algorithm described in Gubernov et
al . (2003) for the adiabatic case. This is due to the non-uniform grid, which we
use to approximate the stationary solution of the non-adiabatic problem (3.2). The
spectral problem (4.6) is integrated numerically by means of the fifth-order Runge–
Kutta method with the adaptive step-size control as in § 3. The numerical scheme
for (4.6) requires the stationary solution, which appears in the equations explicitly,
to be approximated at arbitrary values of coordinate ξ. In other words, grids for the
systems (3.2) and (4.6) do not coincide. The Neville algorithm (Press et al . 1992)
for constructing the interpolation polynomial is used to find u(ξ) and v(ξ) for any
value of ξ inside of the integration interval. The Neville scheme uses the values of
u(ξ) and v(ξ) (obtained by numerically solving (3.2)) at four grid points closest to
ξ and allows the control of the error made during interpolation. In our calculations
this error has been of the order of 10−13. The error of the numerical integrator has
been set to be 10−5, as in § 3.

The stability analysis of the travelling front of (2.1) then reduces to the search for
zeros of the Evans function (6.6) located in the right half-plane. To find the zeros of
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D(λ) we apply two techniques described in Gubernov et al . (2003). First, we use the
Nyquist plots, which are based on the argument principle which says that the number
of zeros of an analytic function inside of a closed contour equals the number of times
the image of this contour under D(·) winds (wraps) around the origin. This number
is often called the winding number, which we denote by N . If we want to determine
the total number of zeros located in the right half-plane, we take a contour, including
the imaginary axis and a semicircle with an infinite radius, such that all points of
the contour satisfy Re(λ) � 0. The circular part of the contour counts for nothing
because of the Evans function asymptotic behaviour (see the previous section). Once
we have found the total number of zeros in the right half-plane for some fixed λ, τ
and l we obtain their approximate location by taking several contours of decreasing
area including one of the zeros. Next, we solve the equation D(λ) = 0 with the
Newton–Raphson method, using the data obtained above to determine good initial
values. Then the solution of D(λ) = 0 can be continued for different values of the
parameters.

Next we consider the case of zero ambient temperature and then generalize the
results for ua greater than zero.

(a) Zero ambient temperature (ua = 0)

In figure 7 we plot the bifurcation diagram for fixed values of parameters τ = 0.1
and l = 10−5. Here it is convenient to consider c as an independent parameter, and
therefore the dependence of β on c, for the stationary front, is a unique function,
as shown in figure 7c. Using the technique described above we are able to find the
zeros (or points of the discrete spectrum) of the equation D(λ) = 0 in the complex
plane. The dependence of the real part of the points of the discrete spectrum on c is
presented in figure 7a. The location of the zeros of the Evans function in the complex
plane as c is varied is shown in figure 7b. We plot the values of β for the stationary
front versus an imaginary part of the zeros of the Evans function for different values
of c in figure 7d. As we decrease the speed from c ≈ 0.033, a pair of complex-conjugate
points of the discrete spectrum moves from the right to the left half-plane. Then at
some critical value of cH, shown in figure 7 by the dashed lines marked with the label
‘Hopf’, these points cross the imaginary axis giving rise to an oscillatory instability.
If we change c further, the zeros of the Evans function approach the real axis and, at
some value of the speed, they collide with each other, giving birth to a pair of purely
real eigenvalues. These eigenvalues move along the real axis in opposite directions as
we continue to reduce c. One of the points of the discrete spectrum approaches the
origin when the speed of the front reaches the extinction limit, shown on figure 7
by the dashed lines marked with the label ‘ext’. The other eigenvalue remains in
the right half-plane causing the instability of the slow branch of the stationary front
solutions.

Next we investigate how the scenario described above changes when we vary
parameters τ and l. Critical parameters of the Hopf bifurcation are traced in exactly
the same way as it was done in Gubernov et al . (2003), namely, we solve the equation
Re(λ) = 0 together with the equation for the zeros of the Evans function D(λ) = 0 by
using the Newton–Raphson method. In figure 8 we plot the critical values of c versus
l for the Hopf bifurcation and extinction. The inverse Lewis number is τ = 0.1. We
characterize the stability in each region on the plane (c, l) by the winding number
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Figure 7. Bifurcation diagram for τ = 0.1, l = 10−5 and ua = 0. Dots connected with solid lines
correspond to numerical results. Dashed lines with the index ‘Hopf’ show the critical parameter
values for the ‘Hopf’ bifurcation, whereas the index ‘ext’ implies extinction. (a) The dependence
of the real part of points of discrete spectrum on the speed of the front; (b) the location of the
points of discrete spectrum on the complex plane as we change c; (c) the dependence of β on c
for the steady propagating front; (d) the imaginary part of the points of discrete versus β. In
part (b) a circle shows zero eigenvalue, which always exists due to shift symmetry.

N , which is calculated using the argument principle described earlier. In region 1
the winding number N = 0 and the solution is stable, whereas in regions 2 and 3
the winding number N = 2 and N = 1, respectively, indicating that the solutions
are unstable. Shown in the inset is an important point ‘o’ on the graph, where the
curve corresponding to the Hopf bifurcation intersects with the curve for the extinc-
tion. This point is sometimes called the Bogdanov–Takens bifurcation (Kuznetsov
1981). Here once again we note that this is not the classical Bogdanov–Takens bifur-
cation due to the presence of the zero eigenvalue. If we take l less than the value
at the intersection lo, then the scenario of the transition to instability as we change
c corresponds to the one described in the comments for figure 7 (for l = 10−5). As
we approach the value lo the distance between the critical speed at the points of
extinction ce and the Hopf bifurcation cH becomes smaller until ce = cH for l = lo.
At this point two zeros of the Evans function move from the left half-plane to the
imaginary axis, as we approach the extinction limit from above by changing the front
speed (this corresponds to the change of c along the dashed thin line in figure 8a).
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Figure 8. Critical parameter c versus l for Hopf bifurcation (labelled ‘Hopf’) and extinction
(labelled ‘ext’) for τ = 0.1 and ua = 0. Dots connected with solid lines correspond to numerical
results. Thin line with arrows shows the path in parameter space along which we move in figure 7.
Regions 1 and 2 correspond to fast solutions, which are stable in 1 with winding number N = 0,
and unstable in 2 with N = 2. In region 3 the solutions are slow and unstable, N = 1. The inset
is an enlargement of the graph near the point o, where the curve corresponding to the Hopf
bifurcation locus intersects with the curve for the extinction locus.

However, they do not cross the imaginary axis at c = ce but they hit the origin along
the imaginary axis instead, giving birth to a pair of purely real eigenvalues. One of
these eigenvalues moves to the left half-plane, while the other to the right half-plane,
as we decrease c further. The Hopf bifurcation ceases to exist for l > lo. In this case
a point of the discrete spectrum moves along the real axis from the left half-plane
to the right half-plane as we pass from the fast to the slow branch of the solutions.
The scenario we have just outlined qualitatively agrees with predictions of the MAE
described in § 5.

In figure 9 we plot the critical parameter c as a function of l for both the Hopf
bifurcation and extinction. The graph is drawn for different values of τ = 0.1, 0.2, 0.3,
and 0.4. As we increase l, the region where an oscillatory instability manifests itself
is squeezed out towards the larger values of heat loss. In figure 9a we plot the
dependence of the front speed co, where the curves for the Hopf bifurcation and
the extinction intersect, as a function of l. The function co(l) obtained from the
matched asymptotic analysis is also drawn on the same graph. As we can see, the
difference between the numerical results and the prediction of the asymptotic method
is substantial. This is expected, since the linear-stability analysis outlined in § 5 is
valid for τ asymptotically close to unity. However, for τ ∼ 1 the value of lo tends to
zero very rapidly and it is difficult to verify the asymptotic dependence of co(τ) and
lo(τ) numerically.

In figure 10, the Hopf frequency ω as a function of l is plotted for τ = 0.1, 0.2, 0.3,
and 0.4. We also present the values of ω in the adiabatic case (l = 0), which were
obtained in Gubernov et al . (2003), by the dashed lines in the left part of the graph.
The convergence to the adiabatic values is fast for τ = 0.1 and 0.2, whereas it
manifests itself for smaller values of l in the case τ = 0.3 and 0.4. In the right part
of the figure all curves show the rapid decay of ω. This occurs when we approach
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cation for τ = 0.1, 0.2, 0.3 and 0.4, respectively. Curves labelled with ‘ext’ depict the extinction
limit for the same set of τ values. In the inset the dependence co on τ is plotted; dots connected
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analysis.
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Figure 10. Hopf frequency ω as a function of l for ua = 0 and τ = 0.1, 0.2, 0.3 and 0.4.
Dashed lines on the left correspond to the adiabatic (l = 0) values of ω.

the point where the Hopf and the extinction loci intersect and the two points of the
discrete spectrum hit the origin along the imaginary axis, which results in the Hopf
frequency ω → 0.

(b) Non-zero ambient temperature (ua > 0)

Next we generalize the results of the previous subsection for the case of ua greater
than zero.
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Figure 11. Critical parameter c versus l for τ = 0.1. Dots connected with solid lines represent
numerical values. Curves 1, 2, 3 and 4 correspond to the critical parameters of the Hopf bifurca-
tion for ua = 0, 0.005, 0.01 and 0.02, respectively. Curves labelled with ‘ext’ depict the extinction
limit for the same set of ua values.

In figure 11 we show the critical parameter c as a function of l for both the Hopf
bifurcation and extinction. The graph is plotted for fixed τ and different values of
ua = 0, 0.005, 0.01 and 0.02. In figure 12, the Hopf frequency ω as a function of l
is plotted for τ = 0.1 and different values of the ambient temperature. As can be
seen from both figures the inclusion of the non-zero ambient temperature into the
model does not change its qualitative behaviour. However, if one is interested in
quantitative results, for example, in order to compare the prediction of the model
with experimental data, taking ua into consideration is essential.

8. Conclusions

In this paper we have considered the model with one-step chemistry for the propaga-
tion of the non-adiabatic combustion fronts for the cases with both zero and non-zero
ambient temperature.

We have numerically investigated the stationary solutions using the shooting and
relaxation methods. For the case of ua = 0 the results of this paper substantially
extend the analysis carried out in our previous paper (Gubernov et al . 2003), where
the heat loss was neglected. The comparison of the model with the heat loss and
without it reveals the fact that the difference in the characteristic coordinate length
in which the solution changes significantly in the preheat, reaction and product
zones is much more substantial in the non-adiabatic case. Therefore, the numerical
algorithms have been modified to take into account this difference by using the
non-uniform coordinate grid. This then allows us to investigate the properties of
the stationary solutions such as the dependence of the extinction limit, the speed
of the front and the residual amount of fuel left behind the front for a wide range
of parameter values. The numerical results were compared with the prediction of
the MAE method. The difference between the numerical data and the prediction of
asymptotic analysis for the speed of the front and the extinction limit is substantial
for small and moderate values of β, and it becomes less significant for large values
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Figure 12. Hopf frequency ω as a function of l for τ = 0.1 and ua = 0, 0.005, 0.01, 0.02.

of β, especially when τ = 1. This is expected as the MAE is valid for large values
of β and higher-order terms of the expansion have to be considered to give a better
correspondence with the numerical results.

Next we generalized the model to allow non-zero ambient temperature. The
behaviour of the system with ua > 0 is qualitatively the same as for the case of
zero ambient temperature. However, the investigation reveals some quantitative dif-
ferences between these two cases. In particular we showed that increasing ua results
in the growth of the region of parameter values for which the travelling-wave solution
exists.

The linear-stability problem for the stationary solution has also been considered.
We solved it numerically using the Evans function approach, which is extended by the
compound-matrix method. The details of the algorithm are described in our previous
paper (Gubernov et al . 2003). In the present paper we extend the applicability of
the methods to non-uniform grids. We were able to provide a detailed description of
the scenarios of transition to instability as the parameters of the problem are varied.
It was shown that there are two main ways for the onset of instability in the system.
Firstly, if the heat loss is less than the critical value lo, then for fixed τ the steady
propagating front exhibits an oscillatory instability via the Hopf bifurcation, as we
move from the fast to the slow branch along the family of the stationary problem
solutions c(β, τ, l). On the other hand, if l > lo, then for fixed τ the fast branch is
stable and the slow branch is unstable; the transition to instability occurs at the
point of extinction in a monotonous way. The critical values for the Hopf bifurcation
and the extinction were found in the parameter space for small and moderate values
of τ . The results were compared with the prediction of the matched asymptotic
analysis in the case of zero ambient temperature. It was shown that in the range
of parameters considered in this paper, the asymptotic analysis gives the correct
qualitative description of the transition to instability.

The authors are thankful to A. R. Champneys, S. J. Malham, D. E. Pelinovsky and the referees
for helpful comments.
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