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The propagation of planar combustion waves in an adiabatic model with two-step
chain branching reaction mechanism is investigated. The travelling combustion wave
becomes unstable with respect to pulsating perturbations as the critical parame-
ter values for the Hopf bifurcation are crossed in the parameter space. The Hopf
bifurcation is demonstrated to be of a supercritical nature and it gives rise to peri-
odic pulsating combustion waves as the neutral stability boundary is crossed. The
increase of the ambient temperature is found to have a stabilizing effect on the
propagation of the combustion waves. However it does not qualitatively change the
behaviour of the travelling combustion waves. Further increase of the bifurcation
parameter leads to the period doubling bifurcation cascade and a chaotic regime of
combustion wave propagation. The chaotic regime has a transient nature and the
combustion wave extinguishes when the bifurcation parameter becomes sufficiently
large. For Lewis numbers for fuel close to unity the parameter regions where pul-
sating solutions exist become very close to each other and this makes it difficult to
experimentally observe the period doubling. It is shown that the average velocity of
pulsating waves is less than the speed of the travelling wave for the same parameter
values.
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1. Introduction

Pulsating regimes of flame propagation in premixed solid combustion have been
observed as early as 1950 (Belyaev & Komkova 1950), in experiments with chrome-
magnesium thermite. In that work the influence of the pressure variation of the inert
dilutant upon the speed of the combustion wave was examined for various thermites.
It was found that for chrome-magnesium thermite the increase of pressure above
certain critical value resulted in pulsating behaviour of the flame propagation with
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the alternating intervals of fast combustion and long depression. A tendency to-
wards flame extinction for pulsating regimes was also reported. However, no expla-
nation of this phenomenon has been given and it was treated as an unusual type of
flame propagation. A regular description of pulsating combustion waves was given
by Maksimov (1963) in an experimental study of nitroglycerine propellant com-
bustion. It was determined that pulsations were of a truly auto-oscillatory nature,
which was related to the mechanism of combustion only. In that paper pressure of
the inert component was used as a bifurcation parameter and it was found that
the increase of this parameter could lead to complex regimes of flame oscillations
with irregular time intervals between successive temperature peaks. In the paper
by Shirko & Nersesyan (1978) on solid premixed combustion of tantalum-carbon
mixture experimental observation of a period doubling bifurcation was reported.
The dilution of the combustible mixture with an inert resulted in onset of pul-
sations which were determined as small almost harmonic oscillations of the flame
speed. As the dilution ratio increased the oscillations became more relaxational and
at certain stage the period two solution emerged. It was also observed that more
complex oscillatory regimes occurred as the dilution rate was further increased. Pul-
sations are often observed in solid combustion in experiments on self-propagating
high-temperature synthesis (Merzhanov & Rumanov 1999). In contrast, pulsating
waves are rare in experiments with combustible gas mixtures. One example was
given by Pearlman & Ronney (1994), where radial pulsating waves with a complex
time behaviour were observed for the high Lewis number premixed gas combustion
which were attributed exclusively to thermal-diffusive instabilities.

Analytical description of the emergence of pulsating planar combustion waves
from the travelling planar combustion waves was formulated in terms of single-step
diffusional-thermal models. In numerical investigations of gasless solid combustion
Shkadinskii et al. (1971) demonstrated that the pulsating regime of flame propaga-
tion existed in a model with single-step kinetics of the reaction. Based on numeri-
cal data the phenomenological approximation of the neutral stability boundary was
found and it was also shown that as the bifurcation parameter increased the dynam-
ics of pulsations became more and more complicated. In Aldushin et al. (1973) the
numerical investigation of the solid gasless combustion was carried out for various
kinetic laws of Arrhenius type which modelled the effect of heterogeneous condensed
media on the flame propagation regimes. The authors clearly demonstrated period
doubling bifurcations in the dynamics of flame pulsations. The pulsating waves of
various periods were reported to be followed by more sophisticated regimes of flame
oscillations which could not be traced accurately as the bifurcation parameter was
increased. It was also noted in Aldushin et al. (1973) that the number of period
doubling bifurcations observed before the onset of complex pulsations depended
upon the specific kinetic law: for the case, where there was strong effect of het-
erogeneity, only period two solutions were observed, whereas for the case of weak
heterogeneity, solutions with periods higher than two were found. Further advances
in the understanding of the flame oscillations were related to activation energy
asymptotics which was one of the cornerstones of combustion theory. Using this
approach the properties of pulsating waves in both solid (Matkowsky & Sivashin-
sky 1978) and gaseous (Joulin & Clavin 1979; Matkowsky & Olagunju 1980) pre-
mixed combustion were studied in detail based on diffusional-thermal models with
one-step kinetics and the Arrhenius type temperature dependence of the rate of
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the reaction. The linear stability analysis was carried out for solid adiabatic flames
(Matkowsky & Sivashinsky 1978) and for both gaseous adiabatic flames (Joulin &
Clavin 1979; Matkowsky & Olagunju 1980; Sivashinsky 1977) and gaseous nonadi-
abatic flames (Joulin & Clavin 1979) under a condition close to equivalence. It was
demonstrated that the onset of pulsating instabilities was due to the Hopf bifurca-
tion and the condition for the stability loss of the travelling planar waves as well
as the dispersion relation for the pulsating instabilities were established in terms
of the control parameters. In Matkowsky & Sivashinsky (1978) and Matkowsky &
Olagunju (1980) the nonlinear bifurcation analysis of the pulsating solutions was
also carried out and it was shown that the Hopf bifurcation had a supercritical
character. The amplitude, frequency and speed of the pulsating combustion wave
were estimated near the point of bifurcation in the parameter space. The pulsating
wave was demonstrated to have a mean velocity less than the travelling wave speed.
These results were also reviewed by Margolis & Matkowsky (1983). Although the
activation energy asymptotic approach has proved to be successful for the analysis
of the primary bifurcation of pulsating waves from the travelling combustion waves,
investigation of period doubling bifurcations usually can be done only numerically.

In Weber et al. (1997) the propagation of combustion waves in solid and gaseous
mixtures was studied numerically for an adiabatic model with one-step kinetics.
It was demonstrated that for the case of Lewis number equal to unity (gaseous
mixture) the pulsating waves did not exist whereas for solids the pulsating solutions
of period 1, 2 and more complex dynamics were observed. In Mercer et al. (1998)
and McIntosh et al. (2004) nonadiabatic combustion waves in a solid fuel were
investigated. The emergence of pulsating waves due to the Hopf bifurcation was
found and the period doubling bifurcations giving rise to pulsating solutions of
period 2 and 4 were determined in the parameter space (Mercer et al. 1998). The
authors speculated that further increase of the bifurcation parameter could lead
to period doubling route to chaos. However, as the bifurcation parameter became
large the flame extinguished. It was not clear if the flame quenching is attained
through the chaotic pulsations or otherwise. The fact that the pulsating behaviour
was observed for solids and did not emerge in gasses at least under the condition of
equivalence was explained in Gubernov et al. (2003, 2004), where it was shown that
the onset of pulsating instabilities was due to the Bogdanov-Takens bifurcation from
which the Hopf locus originated in the parameter space. For a given value of the heat
loss parameter the Bogdanov-Takens bifurcation was located at the definite Lewis
number greater than unity. Subsequently for Lewis numbers above this critical value
the pulsating instabilities emerged with the increase of the activation energy. On the
other hand, for Lewis numbers below the critical value corresponding to Bogdanov-
Takens bifurcation no pulsating behaviour occurred. A similar scenario has been
observed recently in diffusion flames (Gubernov & Kim 2006). This result correlates
with the analysis in Aldushin et al. (1973). In Bayliss & Matkowsky (1990) two
adiabatic models of solid premixed combustion were studied numerically. One of
the models allowed melting of the solid component while the other one did not.
In both models the increase of the activation energy led to the onset of pulsations
due to the Hopf bifurcation. For the model without melting the sequence of period
doubling bifurcations was shown to occur as the bifurcation parameter became
larger. The pulsating solutions of period 2, 4, and 8 were found. A period doubling
route to chaos was suggested with the increasing values of bifurcation parameter.
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However for the model with melting of the solid fuel only bifurcation to period 2
solution was observed, the period one and period two solutions alternated as the
bifurcation parameter was increased and a transition to chaos via intermittency
was predicted as the bifurcation parameter became sufficiently large. In a number
of papers (Brailovsky & Sivashinsky 1993; Frankel et al. 1994; Frankel et al. 2000)
free-boundary models were considered in order to investigate thermal instabilities
in solid combustion. Depending on the kinetic functions used in these systems two
scenarios of stability loss with respect to pulsating perturbations were observed.
The travelling combustion wave either became unstable due to the Hopf bifurcation
followed by a period doubling cascade leading to chaotic solution or the stability
loss was due to the infinite period bifurcation of the Shilnikov type. In Frankel et

al. (2000) both sub- and supercritical Hopf bifurcations and multiple cascades of
period doubling were reported to occur.

Although the literature overview presented above is far from being complete
it demonstrates that significant success has been achieved recently in the under-
standing of the reasons of the onset of planar pulsating regimes of combustion waves
propagation on the basis of the one-step diffusional-thermal models. The aim of our
current research is to investigate how the scenarios of the stability loss and the on-
set of pulsations are projected onto the dynamical behaviour of the two-step model
with chain-branching reaction mechanism and first order recombination reaction
introduced recently by Dold (2007). In Dold (2007) the properties and stability of
the travelling combustion waves were studied using activation energy asymptotics.
In our recent papers (Gubernov et al. 2008a, b, 2009) we investigated numerically
the properties of travelling combustion waves and their stability with respect to
pulsating perturbations and compared the results with the predictions the corre-
sponding one-step models and the results presented by Dold (2007). We summarize
our results from Gubernov et al. (2008a, b, 2009) in the third section of the current
paper. In the second section the model equations are introduced and in the fourth
section we perform the analysis of pulsating solutions emergence and investigate
the bifurcations leading to stability exchange exhibited by pulsating waves. In the
concluding section the results are summarized and discussed, including prospects
of future work.

2. Model

We consider an adiabatic model for premixed flame propagating in one spatial
dimension that includes two steps: autocatalytic chain branching A+ B → 2B and
recombination B +M → C +M . Here A is the fuel, B is radicals, C is the product,
and M is a third body. It is assumed that all the heat of the reaction is released
during the recombination stage and the chain branching stage does not produce or
consume any heat. Following Gubernov et al. (2008a), the governing equations for
the nondimensional temperature, u, concentration of fuel, v, and radicals, w, can
be written in nondimensional form as

ut = uxx + rw,

vt = L−1
A vxx − βvwe−1/u,

wt = L−1
B wxx + βvwe−1/u − rβw,

(2.1)
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where x and t are the dimensionless spatial coordinate and time respectively, LA and
LB are the Lewis numbers for fuel and radicals respectively, β is the dimensionless
activation energy of the chain-branching step (which corresponds to the definition
for the one-step model (Gubernov et al. 2004), r is the ratio of the characteristic
time of the recombination and branching steps (which cannot be reproduced in
one-step approximations of the flame kinetics).

Equations (2.1) are considered subject to the boundary conditions

u = ua, v = 1, w = 0 for x → ∞,

ux = 0, vx = 0, w = 0 for x → −∞.
(2.2)

On the right boundary (fresh mixture) we have cold (u = ua) and unburned state
(v = 1), where the fuel has not been consumed yet and no radicals have been
produced (w = 0). In contrast to one-step models the ‘cold boundary problem’
does not exist for the current model. The ambient temperature is allowed to take
any value as long as the branching reaction is not activated in the fresh mixture
i.e. the reaction term in the third equation in (2.1) is negative. More formally this
implies that r > e−1/ua or the ambient temperature is below the temperature ui ≡
−1/ ln(r) at which the fresh mixture becomes self ignitable. On the left boundary
(x → −∞) neither the temperature of the mixture nor the concentration of fuel
can be specified. We only require that there is no reaction occurring so the solution
reaches a steady state of (2.1). Therefore the derivatives of u, v are set to zero and
w = 0 for x → −∞.

3. Properties of the travelling wave solution

The solution to the problem (2.1) and (2.2) is sought in the form of a travelling
wave u(x, t) = u(ξ), v(x, t) = v(ξ), and w(x, t) = w(ξ), where a coordinate in the
moving frame, ξ = x − ct, is introduced and c is the speed of the travelling wave.
Substituting the solution of this form into the governing equations we obtain

uξξ + cuξ + rw = 0,

L−1
A vξξ + cvξ − βvwe−1/u = 0,

L−1
B wξξ + cwξ + βvwe−1/u − rβw = 0.

(3.1)

The boundary conditions (2.2) can be modified if we multiply the first equation in
(3.1) by β, add it to the second and third equations in (3.1) and integrate it once
over ξ from minus to plus infinity. This yields a condition: limξ→−∞ S = limξ→+∞ S,
where S = βu + v + w. Combining this condition with (2.2) results in

u = ua, v = 1, w = 0 for ξ → ∞,

u = ub, v = σ, w = 0 for ξ → −∞,
(3.2)

where ub ≡ limξ→−∞ u(ξ) = ua + β−1(1 − σ) is the adiabatic burned mixture
temperature and σ denotes the residual amount of fuel left behind the wave and is
unknown until a solution is obtained.

In order for the travelling wave solution of (3.1) to exist several conditions have
to be satisfied. The reactions in front of the wave, in the preheat region, and behind
the wave, in the product region, should be in chemical equilibrium. The latter
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restriction implies that the radicals cannot be produced in these regions effectively.
In other words the production of radicals is overwhelmed by their consumption of
the radicals, which are governed by the second and the third terms in the right
hand side of the last equation in (3.1). In front of the flame, the temperature of
the fresh mixture is limited from above by ui as discussed earlier. In the product
region, the reaction must be completed therefore the branching term is less than
the recombination term in the third equation of (2.1), that is r > σ exp(−1/ub).
This condition was first derived in Gubernov et al. (2008a) for the adiabatic case
and defines the region in the parameter space where the travelling combustion
waves exist. Once this condition is violated the adiabatic combustion waves exhibit
extinction.

The properties of the travelling combustion waves were investigated analytically
by Dold (2007), Gubernov et al. (2008a) and numerically by solving the set of equa-
tions (3.1) subject to boundary conditions (3.2) by Gubernov et al. (2008a, 2009).
It was found that varying the Lewis number for fuel, LA, has a substantial effect on
the properties of the premixed flames whereas the variation of Lewis number corre-
sponding to the radicals, LB, affects only quantitative behaviour of the combustion
waves. For the case of Lewis number for fuel less than unity (LA < 1) the depen-
dence c(β) is a monotonically decaying function exhibiting extinction as the flame
speed reaches zero at a certain value of the activation energy, βe, corresponding to
extinction. For parameter values sufficiently away from the extinction condition the
residual amount of fuel can be neglected. Almost all fuel is converted to radicals and
no fuel leakage is observed (σ → 0). As we increase β and approach the extinction
point, the value of σ becomes significant. At the extinction condition the residual
amount of fuel reaches its maximum value. The dependence of the flame speed, c,
on β becomes C-shaped for LA > 1 i.e. c(β) is a double-valued function. There are
either two solutions travelling with different flame speeds or the solutions cease to
exist due to the extinction when the fast solution branch meets the slow solution
branch at the turning point of the c(β) curve. We denote the coordinates of the
turning point with subscript ‘tp’, i.e. βtp and ctp = c(βtp). For small values of β the
fast solution branch is characterised by a negligible amount of fuel. As the activation
energy is increased, the residual amount of fuel grows and it becomes significant as
the turning point of c(β) is approached. The slow solution branch is characterised
by a considerable fuel leakage. As we move along the slow solution branch by de-
creasing β from the turning point value, the flame speed decreases and at certain
value βe it becomes equal to zero. As shown in Gubernov et al. (2008b), variation
of LB over two orders of magnitude does not affect the qualitative behaviour of
the solution branches in the parameter space. The behaviour of the travelling com-
bustion waves described above is also illustrated in figure 1, where the dependence
of the wave speed, c, is plotted against the dimensionless activation energy, β, for
two values of the Lewis number for fuel LA = 1 and LA = 10 as shown in figure.
The value of the Lewis number for radicals is fixed LB = 1 throughout this paper,
whereas r is taken equal to 10−4. For the case LA = 1 the dependence of c on
β is a monotonically decaying function. Once LA becomes greater than one, the
flame speed c turns into a double valued function of β. The effect of the ambient
temperature variation is also investigated. In figure 1 the dashed lines represent
the solutions obtained for ua = 0.0 and the solid lines show c(β) for ua = 0.01.
As in the case of the one-step kinetics, studied in (Gubernov et al. 2005), as the
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Figure 1. The dependence of the flame speed, c, on dimensionless activation energy, β,
for LA = 1.0 and 10.0 as shown in figure. The dashed lines represent the solutions with
ua = 0.0, whereas the solid lines correspond to the case ua = 0.01.

fresh mixture is preheated to higher initial temperatures, the domain of existence
of the travelling combustion waves becomes larger. In other words, the increase of
the ambient temperature results in the growth of both the flame speed and the
βtp values, expanding the domain of β values for which the travelling combustion
waves exist. At the same time the ua variation does not affect the c on β dependence
qualitatively.

The linear stability of the travelling combustion waves is investigated in Gu-
bernov et al. (2009) in detail for the case ua = 0. Here we extend the previously
obtained results to include the effect of nonzero ambient temperature on the flame
stability. The governing equations (2.1) are linearised near the travelling wave so-
lution in order to obtain the linear stability problem which describes the evolution
of the infinitely small perturbations of the travelling wave. We seek the solution of
the form u(ξ, t) = U(ξ) + ǫv(ξ) exp(λt), where u = [u, v, w]T is the solution in
vector form, U(ξ) = [U(ξ), V (ξ), W (ξ)]T represents the travelling combustion wave
and terms proportional to the small parameter ǫ are the linear perturbation terms.
Substituting this expansion into (2.1), leaving terms proportional to the first order
of ǫ only we obtain

L̂v = λv, (3.3)

where L̂ = D̂ + c∂/∂ξÎ + M̂(ξ) is the linear differential operator and we have
introduced Î - a 3 × 3 identity matrix,

D̂ =




∂2/∂ξ2 0 0

0 L−1
A ∂2/∂ξ2 0

0 0 L−1
B ∂2/∂ξ2


 , M̂(ξ) = ∂N̂/∂u

∣∣
u=U(ξ) ,

(3.4)

the reaction terms are defined as N̂(u) =
[
rw, − βvwe−1/u, βvwe−1/u − βrw

]T
. In

(3.4) the derivative ∂/∂u
∣∣
u=U(ξ) denotes the Jacobi matrix evaluated at u(ξ, t) =

U(ξ). The linear stability problem, (3.3) subject to boundary conditions |v| → 0 as
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Figure 2. Stability diagrams for LB = 1 and r = 10−3. In figure (a) the diagram is shown
in β vs LA plane for ua = 0.0 and ua = 0.01. In figure (b) the diagram is plotted on ua vs
β plane for LA = 10.0. The solid and dotted lines represent the loci of critical parameter
values for extinction and Hopf bifurcation respectively.

ξ → ±∞, is solved by finding the location of the discrete spectrum of L̂ in a complex
plane using the Evans function method (Evans 1972) implemented with the use of
a compound matrix approach as discussed in Gubernov et al. (2009). Since the
technique of the stability analysis which is used in this paper is essentially identical
to analysis in Gubernov et al. (2009) we skip it here to avoid the repetition of our
earlier paper and proceed to the description of the new results.

For the case LA > 1 the travelling combustion wave is either stable or exhibits
the onset of pulsations as a result of the Hopf bifurcation. The results of this study
are summarised in figure 2 where the critical parameter values for the extinction
and Hopf bifurcation are depicted with the solid and the dotted lines respectively
on the LA versus β plane for LB = 1 in figure 2a and on β vs ua plane for LA = 10
in figure 2b. In figure 2a the Lewis number for fuel is plotted in decimal logarithmic
scale in order to map the range of its variation uniformly on the graph. The term
extinction here means the case when the turning point of the c(β) curve is reached
for LA > 1. In figure 2a the stability diagram is plotted for two values of the am-
bient temperature ua = 0.0 and ua = 0.01. For each value of ua the region to the
right from the solid line corresponds to the parameter values, where the travelling
wave solutions do not exist. The parameter values to the left from the extinction
curve correspond to the region where two travelling wave solution branches may
coexist LA > 1. The stability analysis shows that in this parameter region the slow
solution branch is always unstable and the fast solution branch is either stable or
exhibits the onset of pulsating instabilities via the Hopf bifurcation. The dotted line
corresponds to the Hopf bifurcation locus. Between the dotted (Hopf) and the solid
line (extinction) lies a region where the fast travelling solution branch is unstable.
Once the dotted line is crossed in the parameter space, for example, by increas-
ing β for fixed LA the fast branch of travelling wave solutions becomes unstable
with respect to pulsating instabilities. The point where the Hopf bifurcation curve
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meets the extinction curve is a bifurcation of co-dimension two and is known as the
Bogdanov-Takens bifurcation. There are two zero eigenvalues of the linearized sta-
bility problem (3.3), and a Hopf bifurcation and a saddle-node bifurcation meet at
this point. It is also a point from which the Hopf bifurcation locus in the parameter
space originates and therefore this bifurcation is directly responsible for the onset
of pulsations in the model. As seen in figure 2a the increase of ua shifts both the
boundary of the existence of travelling solutions and the Hopf loci towards higher
values of the dimensionless activation energy. In other words the ambient tempera-
ture rise has a stabilizing effect on the propagation of the combustion waves, which
correlates with the results in Gubernov et al. (2005). This issue is further clarified
in figure 2b where the loci for extinction (solid line) and Hopf bifurcation (dashed
line) are plotted in β vs ua plane for LA = 10 and LB = 1. The region above
the solid curve is marked as ’no solutions’ and represents the parameter values,
where there are no travelling combustion waves. For parameter values located be-
low the extinction locus where are two travelling wave solutions. The slow solution
is unstable. The fast solution is stable below the Hopf locus and exhibits pulsating
instabilities in the parameter region between the solid and dashed curves. Since the
variation of ua does not change the qualitative behaviour of the combustion waves,
in the rest of the paper we fix the value of the ambient temperature to zero.

Gubernov et al. (2009) demonstrated that the variation of LB does not affect
the qualitative properties of the stability diagram, although the critical parameter
values for the Hopf bifurcation substantially shift towards the larger values of β with
the increase of LB. The extinction curve is only slightly influenced by variations
in LB, namely, the extinction curve rotates clockwise around the Bogdanov-Takens
bifurcation point with the increase of LB. It should also be noted that the location
of the Bogdanov-Takens bifurcation is not affected by variation of LB .

4. Period doubling bifurcations of pulsating solutions

We investigate the properties of pulsating combustion wave solutions emerging as
a result of the Hopf bifurcation when the parameters reach critical values. The
governing equation (2.1) are solved in a sufficiently large coordinate domain with
the boundary conditions (2.2) imposed at the edge points of the space grid. For
our numerical algorithm we use the method of splitting with respect to physical
processes. Initially we solve the set of ordinary differential equations which describe
the temperature and the species concentration variations due to the branching and
recombination reactions by using the fourth order Runge-Kutta algorithm. As a
next step, equations of mass transfer for fuel and radicals are solved with the
Crank-Nicholson method of the second order approximation in space and time.
The initial conditions for the numerical scheme are taken in a form of the travelling
wave solution (or autowave) of (3.1).

As the Hopf curve is crossed in the parameter space the emerging oscillatory
instabilities lead to the formation of pulsating waves, which on average travel with
definite speed, cdrift, however distribution of u(x, t), v(x, t), and w(x, t) are
periodic functions of time. In order to describe these solutions it is convenient to
use coordinates ξ = x − cdriftt in the frame travelling with the speed cdrift and
trace the location of the maximum value of the radical concentration, ξmax, and
its value, wmax. An example of a periodic pulsating wave is presented in Gubernov
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Figure 3. Properties of the Hopf bifurcation. In figure (a) the dependence of ∆c on A is
plotted for LA = 3.0, LB = 1.0 and various values of β ∈ [4.0703, 4.075]. The solid line
represents the perturbation analysis and crosses are the results of direct PDE calculation.
In figure (b) the dependence of c2 on LA is shown for LB = 1.0. Squares connected with
the solid line represent the perturbation analysis results.

et al. (2009). Here we investigate the properties of the Hopf bifurcation in greater
detail. We use a standard perturbation analysis which can be found in a number
of textbooks (e.g. Volpert et al. 1991). Therefore below we only briefly outline the
derivation of the main results and refer the reader to literature on this subject for
more details. The pulsating solution bifurcating from the travelling wave solution
due to the Hopf bifurcation is sought in the form of the series

u(ξ, t) = U(ξ) + Av1(ξ, t) + A2v2(ξ, t) + ..., c = c + Ac1 + A2c2 + ...

β = βh + Aβ1 + A2β2 + ...,

(4.1)

where the small parameter A is the amplitude of oscillations, c is a travelling wave
speed, βh is the activation energy, index ’h’ here and in what follows implies that the
parameter value is taken at the Hopf bifurcation point. The other parameter values
are fixed, namely, ua = 0, r = 0.001, LB = 1, and the value of LA is specified below.
As shown in Volpert et al. (1991) in the first order of the asymptotic expansion
v1(ξ, t) can be found in the form v1(ξ, t) = v1(ξ) exp(λt), where v1(ξ) satisfies
the linear stability problem (3.3). In the case of the Hopf bifurcation considered

here it has three solutions: v
(0)
1

(ξ), v
(1)
1

(ξ), and v
(2)
1

(ξ) = v
(1)
1

(ξ)∗ corresponding
to λ = 0, iωh, and −iωh respectively. Together with the problem (3.3) an adjoint
problem L̂+z(ξ) = λz(ξ) is considered, where L̂+ = D̂ − c∂/∂ξÎ + M̂(ξ)T . The
adjoint problem also has three bounded solutions z(0,1,2) corresponding to λ = 0,
iωh, and −iωh respectively. In the first order of perturbation analysis it can be
shown that c1 = 0 and β1 = 0 and in the second order the following solvability
condition has to be satisfied

c2 =

[
〈z(0), ∂2N/∂u2〉

]
T

〈z(0),v
(0)
1

〉
, (4.2)
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where ∂2N/∂u2 denotes the vector function which can be obtained by expanding
N(u) subject to (4.1) into series over a small parameter A and taking terms of
the order O(A2) containing v1. The standard inner product is used in (4.2) i.e.

〈f ,g〉 =
∫ +∞

−∞
dξf(ξ)g(ξ) and [·, ·]T means time average over a period T of pulsations.

We calculate the vector functions involved in (4.2) numerically using the tech-
nique described in Gubernov et al. (2004) and then evaluate c2 according to formula
(4.2). In figure 3a the dependence of ∆c = cdrift−c, the difference between the pul-
sating and travelling wave speed, is plotted as function of the amplitude A of wmax

oscillations for LA = 3.0, LB = 1, r = 0.001, ua = 0.0. The activation energy is
varied from βh ≈ 4.0703 to β = 4.075. The solid line shows the parabola ∆c = c2A

2,
where c2 is calculated using (4.2) as outlined above. The results obtained by di-
rect numerical integration of (2.1) are shown with crosses. As β is increased from
the value corresponding to Hopf bifurcation the pulsations emerge. Initially the
amplitude A is small and correspondence between the results derived from both
approaches is good. However as β is further modified to approximately 4.075 the
discrepancy between the data obtained by direct integration of (2.1) and by using
formula (4.2) becomes visible. It should be noted however that for β ≈ 4.075 the
amplitude A of oscillations becomes of the order of 50% of the wmax value for the
travelling combustion wave for the same parameter values. Therefore (4.2) describes
the properties of pulsating waves reasonably well. In figure 3b the dependence of
c2 on LA is plotted for other parameters being the same as in figure 3a). It is seen
that for large values of the Lewis number for fuel c2 tends to a constant value.
In the opposite limit, as LA → 1, the value of c2 sharply increases. This implies
that for LA approaching 1 the system becomes very sensible to small variations of
parameters.

In Gubernov et al. (2009) it is demonstrated that as we move away from the Hopf
locus in the parameter space, by increasing β for fixed LA, the shape of the limit
cycle deforms and becomes triangular indicating that wmax(t) and ξmax(t) contain
higher harmonics in a Fourier series expansion. It is also shown that further increase
of β results in the formation of period two and period four solutions. In our current
paper the sequence of period doubling bifurcations and the emerging solutions are
investigated in greater detail. In figure 4 the Fourier time series of wmax(t) and
Poincaré maps are plotted for LA = 3, LB = 1, r = 0.001 and several values of the
activation energy as is shown in the figure caption. The Fourier amplitudes Wmax

ω

are plotted in decimal logarithmic scale and the frequency is counted in inverse
periods of oscillations T ≈ 3.05× 105 so that ω = 1 in figure 4 is equivalent to T−1

in normal units. In figures 4.1a and 4.1b β = 4.08 which is just above the critical
value for the Hopf bifurcation βh = 4.0703.... The oscillations of wmax(t) are clearly
periodic as seen in figure 4.1a. The spectrum Wmax

ω consists of discrete lines located
at equally spaced frequency intervals so that ωi = i for each line, where index i is a
natural number used to enumerate the spectral lines. The first line of the spectrum
with i = 1 is marked as T in order to signify that it contributes to oscillations
of period T . The amplitudes Wmax

ω of the higher order harmonics with i > 2 of
the Fourier spectrum of wmax(t) are also significant and exponentially decay with
increasing i. This results in the triangular form of the limit cycle for β = 4.08 as
shown in figure 6 of Gubernov et al. (2009). Figure 4.1b depicts the Poincaré map
on the wmax vs ξmax plane. The points for the map were sampled at the moments
of time t∗ when wmax(t) reaches a local maximum. The corresponding values of
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Figure 4. Left graphs (labelled a) represent the Fourier time series of wmax(t) and right
graphs (labelled b) show the corresponding Poincaré maps for LA = 3, LB = 1, r = 0.001
and several values of β: 4.08, 4.0818, 4.0826, 4.08274, 4.0829 in figures 4.1, 4.2, 4.3, 4.4,
4.5 respectively.

ξmax(t∗) and wmax(t∗) are then plotted. In figure 4.1b all the data is located in a
single spot near the point with coordinates (0.0, 0.117) indicating that the dynamics
of the system is of a limit cycle nature. In figures 4.2a and 4.2b the parameters are
further shifted towards the unstable region so that β = 4.0818. In this case the
Fourier spectrum contains both the harmonics ω = i of the frequency 1 and of the
frequency 0.5 i.e. ω = 0.5i. The spectral lines corresponding to ω = 0.5 and to
ω = 1.0 are marked as 2T and T respectively. The emergence of the spectral lines
with frequencies multiple to 0.5 is related to the birth of limit cycle with period 2T .
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Figure 5. Diagram of period doubling bifurcations on the (β, log
10

LA), parameter plane
for LB = 1. The dashed and dotted lines represent the loci of critical parameter values
for extinction and Hopf bifurcation respectively. Crosses connected with solid lines show
the critical parameter values for period doubling bifurcations. The inlet shows a magnified
region of the graph.

In the Poincaré map 4.2b this type of solution corresponds to a diagram with two
distinct points or to two loop curve on the (ξmax, wmax) plane. A slight variation
in the activation energy to β = 4.0826 and to β = 4.08274 results in sequential
bifurcations to solutions with period 4T shown in figures 4.3a,b and period 8T
shown in figures 4.4a,b respectively. The Fourier spectra of these solutions contain
additional sets of lines with frequencies multiple of 0.25 marked as 4T and 0.125
marked as 8T in figures 4.3a, 4.4a. The Poincaré maps of 4T and 8T solutions are
represented in figures 4.3b and 4.4b respectively, where it is seen that the map of
period 4T cycle contains four points and the map of period 8T solution is comprised
of 8 distinct points. The most remarkable change in the system dynamics from
regular to chaotic is observed in figures 4.5a and 4.5b for β = 4.0829. As seen
from figure 5a the Fourier spectrum of the wmax(t) is becoming continuous up
to spectral resolution which was 0.003 in the units used in figure 4. On a visibly
irregular background a set of spectral lines of higher amplitudes and frequencies
ω = i can be observed indicating that the underlying dynamics of system should
bear the pattern of fundamental oscillations of period T . The Poincaré map in figure
4.5b possesses the behaviour of chaotic dynamics. The successive points of the map
randomly occupy certain region on the wmax vs ξmax plane. The distribution of the
map points does not exhibit any visible pattern and appear to be uniform which
evinces the irregular character of the dynamics.

In figure 5 the critical parameter values for the first tree successive period dou-
bling bifurcations are plotted for LB = 1, r = 0.001 on the (β, log10 LA) plane with
crosses connected with the solid line. The crosses represent the results obtained
from the numerical integration of the governing equations (2.1) for LA = 1.5, 2, 3,
and 10 whereas the solid curves are the results of the numerical data interpolation.
Using the critical parameter values for period doubling bifurcations, βi, we esti-
mated the border for the onset of the chaotic regime, β∞, from the Feigenbaum’s
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Figure 6. Fine structure of the loci of period doubling bifurcations on the (log
10

LA,√
β∞ − β), parameter plane for LB = 1. Crosses connected with solid lines show the

critical parameter values for period doubling bifurcations.

universal period doubling cascade (Feigenbaum 1978). Then the predicted results
were verified using the numerical integration. The data obtained in such a way is
also presented in figure 5 as crosses connected with the solid line. The dotted and
dashed curves show the locus for the Hopf and fold bifurcations respectively. The
region of the parameter plane located to the left from the dotted curve corresponds
to the parameter values for which the stable fast autowave solution branch exist
and is marked as deflagration. In the region of parameters situated between the
dotted and the dashed curves the travelling wave are linearly unstable and various
pulsating regimes are observed. Finally, for parameter values below the dashed line
no travelling wave solutions are observed. As is seen in figure 5 the pulsating so-
lutions of various period are located in a narrow region along the Hopf bifurcation
locus. Among the various periodic solutions the strip of parameter values where the
pulsating solutions of period T exist has the largest width and is marked as ‘T ’.
The parameter region where the period 2T solution is observed is just visible on
a full scale graph. The critical parameter values, β1(LA), β2(LA), and β3(LA) cor-
responding to the bifurcations of period 2T , 4T , and 8T solutions respectively are
located too close to be distinguished between each other therefore the magnification
of the region of the figure near the point LA = 10 and β = 4.125 is also plotted as an
inlet to figure 5. In figure 6 loci for the Hopf and the period doubling bifurcations,
β1,2,3(LA), are plotted on the (log10 LA, (β∞−βi)

1/2) plane with crosses connected
with interpolation lines which are marked as 1, 2, 4 and 8 respectively. The coor-
dinates of the graph are scaled in such a way as to resolve the fine structure of the
bifurcation cascade for various LA values. Parameter regions where the period T ,
2T , 4T and 8T solutions exist (marked accordingly in figure 6) shrink in an expo-
nential manner along the β direction. The distance between successive bifurcations
βi+1 − βi decays according to the Feigenbaums cascade (Feigenbaum 1978) with
the Feigenbaum constant estimated from the numerical data as δ = 4.7 ± 0.1. It is
important to note that the difference between βi+1 and βi is a monotonic function
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Figure 7. Projection of a strange attractor and route to extinction on the wmax vs ξmax

plane plotted for LA = 3, LB = 1, r = 0.001, β = 4.0829 in figure (a) and β = 4.0831 in
figure (b) respectively. Dependence of c on β for LA = 3, LB = 1, r = 0.001 in figure (c)
and (d). Figure (d) is an enlarged version of figure (c).

of LA: for high Lewis number for fuel the width of the regions where the pulsating
solutions exist are wider and βi+1 − βi vanishes as LA tends to 1.

After the border between periodic and chaotic region has been crossed, the
strange attractor is formed. Figure 7a illustrates the projection of the strange at-
tractor onto the plane (ξmax, wmax). In this figure the first 200 loops of the trajec-
tory approaching the strange attractor are plotted for LA = 3, LB = 1, r = 0.001
and β = 4.0829. As seen from the figure the time oscillations of the maximum value
of concentration of radicals and its location grow as β is varied from 4.08 for figure 4
to 4.0829 for figure 7. These oscillations are accompanied by the descent in average
flame speed, c, and growth of the oscillations of instant velocity of the wave in the
travelling coordinate frame, c̃ = dξmax/dt. For instance, for the parameter values
corresponding to chaotic behaviour depicted in figure 7a the mean flame velocity is
c = 0.01587, whereas the corresponding travelling wave speed is c = 0.01733. This
is seen in figure 7c and is zoomed in figure 7d, where the dependence of c on β is
plotted. In figure 7c the stable solution branch is shown with the solid line and the
dashed line represent the unstable travelling wave solution. In figure 7d the solid
lines represent the numerical data and the dashed lines show the imaginary con-
tinuation of the solution branches which become unstable due to period doubling
bifurcations. In the enlarged figure 7d the sequence of period doubling bifurcations
can be clearly observed. The instant velocity along the direction of flame wave prop-
agation is reaching maximum values of c̃max = 0.016 and in the backward direction
the speed minimum is c̃min = −0.007. It should be noted that such a significant
change in the propagation velocity is attained as the control parameter β is altered
from 4.0703 for Hopf bifurcation to 4.0829, i.e. for about 0.3% of its value.

As the activation energy is further increased the abrupt change in the dynam-
ics of the system can be observed as illustrated in figure 7b for β = 4.0831. After
encircling several loops in wmax vs ξmax plane in a region where the strange at-
tractor is expected to be situated the trajectory departs away to the point located
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Figure 8. Lyapunov exponent, σ, as function of β for LA = 10.0, LB = 1, r = 0.001 and
ua = 0.0.

at wmax = 0. In other words the solution of (2.1) reaches the stationary state
u(x, t) = 0, v(x, t) = 1, w(x, t) = 0 corresponding to extinction. The same scenario
is observed for other values of LA ∈ (1, 10]. For all LA values the extinction has
been found close to the border of chaotic region in parameter space and its width
along the β direction is estimated to be of the order of β∞ − β3.

5. Chaotic transient

As shown in the previous section when the border of chaotic region is crossed and
β becomes greater than β∞ the strange attractor emerges in the phase space of
the system. In order to study the properties of chaotic attractor we calculate the
largest Lyapunov exponent, σ (Temam 1993). In figure 8 the dependence of σ on
β is plotted for LA = 10.0, LB = 1, r = 0.001 and ua = 0.0. The numerical
error corresponding to the standard deviation is shown with bars. The value of the
Lewis number is fixed to LA = 10.0 for illustrative purposes, since the distances
between the successive bifurcations of period doubling, chaos and extinction borders
in the parameter space are the largest in this case. The estimated critical value of
the activation energy calculated by using the Feigenbaum scenario as discussed in
the previous section is β∞ = 4.14369. This number is very close to the border of
chaotic region in figure 8 where it is found between β = 4.144371 for which σ = 0
and β = 4.144372 for which σ is positive. Therefore this implies that the estimate
of the critical parameters for the onset of chaos using the Feigenbaum criterion is
very accurate. For β greater than the critical value, σ becomes positive and grows
with further increase of β confirming the chaotic nature of the system dynamics.

Further increase of β up to the values about 4.1444 results in the occurrence
of the abrupt changes in the dynamics of the system i.e. sudden extinction of the
flame propagation as discussed in the previous section. In the phase space of the
system there always exists an asymptotic regular attractor related to fresh mixture
state, where the reaction is frozen and the temperature is equal its ambient value.
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Figure 9. Dependence of N on time t for LA = 10, LB = 1, β = 4.14435, r = 0.001 and
ua = 0.0. The histogram represents the data obtained by direct integration of (2.1) and
the dashed line is the result of numerical fitting.

This stationary state has its own basin of attraction and at certain parameter
values it becomes connected to the basin of the strange attractor. As a result the
spatiotemporal chaos collapses after some time to the regular state of fresh mixture.
This type of dynamics is called the chaotic transient and is known to manifest itself
in various dynamical systems including the reaction-diffusion systems (Tel et al.

2008). The collapse of chaotic oscillations occurs in an abrupt and random manner.
We have studied the statistical properties of this process. For given fixed parameter
values the solutions are calculated by direct numerical integration of (2.1) for various
initial conditions taken on the basin of the strange attractor and the life time of
pulsating solutions before the extinction is estimated. In figure 9 the dependence
of the number of extinction events versus the time of integration is plotted as a
histogram i.e. time is split into equal intervals of the length ∆T = 1.26 × 105 and
the number of evens happening during this interval is counted. The parameters are
taken as LA = 10, LB = 1, β = 4.14435, r = 0.001 and ua = 0.0. The overall
number of tries exceeds 500 for figure 9. The N(t) dependence shows characteristic
exponential distribution behaviour which describes the times between events in a
Poisson random process. The linear regression allows to obtain the average life time
which is found to be τ = 4.75×105, the corresponding Pearson correlation coefficient
0.94. In figure 9 the resulting fit of the data to the exponential distribution is
shown with the dashed line. As β is increased the average life time of propagating
solution decays very rapidly. Even the slight variations of the activation energy cause
substantial change of values of τ : for β = 4, 14435 the values of τ is 4.75 × 105, for
β = 4, 144375 τ is 3, 1 × 105, and β = 4, 1444 it drops to 2, 35 × 105. Such a high
sensitivity to changes of control parameters is typical for supertransients (Tel et al.

2008). However, the clarification of detailed characteristics of chaotic transient is
the subject of ongoing work.
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6. Conclusions and discussions

In this paper we have investigated the properties of travelling and pulsating com-
bustion waves in a model with two-step chain-branching reaction mechanism in the
adiabatic limit. The effect of the ambient temperature variation on the properties
of the travelling waves is investigated. We demonstrate that the increase of the
ambient temperature results in the growth of both the flame speed and expands
the domain of β values for which the travelling combustion waves exist. At the
same time the ua variation does not qualitatively affect the behaviour of the c on
β dependence. It is shown that the pulsating instabilities can emerge in the model
for LA > 1 due to the Hopf bifurcation. The critical parameter values for the Hopf
bifurcation are found in the parameter space and it is shown to originate from
the Bogdanov-Takens bifurcation at LA = 1 when the locus for the Hopf and fold
bifurcations meet. The increase of ua shifts both the boundary of the existence
of travelling solutions and the Hopf loci towards higher values of the dimension-
less activation energy i.e. the ambient temperature rise has a stabilizing effect on
the propagation of the combustion waves, which correlates with the results in Gu-
bernov et al. (2005) for the one-step model. The variation of ua does not change
the qualitative behaviour of the travelling combustion waves, however it alters the
quantitative properties.

In the current paper it is found that as the locus for the Hopf bifurcation is
crossed in parameter space the pulsating waves emerge as a result of the super-
critical Hopf bifurcation. The properties of the Hopf bifurcation are investigated in
detail by means of the perturbation analysis and direct numerical integration. The
pulsating waves are propagating with certain average speed, c, and in the coordinate
frame moving with this speed the temperature, concentration of fuel and radicals
are periodic functions of time with period T . It is demonstrated that the pulsating
solution propagates with the average velocity smaller than the corresponding speed
of the travelling wave solution. Also it is shown that for LA → 1 the system be-
comes very sensible to small variations of parameters i.e. small changes of β alters c
substantially. It is convenient to describe the pulsating waves in terms of the max-
imum values of radicals concentration, wmax, and the coordinate of this maximum
in the co-moving frame, ξmax, which become the periodic functions of time for pe-
riod T solutions. In the plane (ξmax, wmax) the period T solutions correspond to
the limit cycle. For the parameter values close to the Hopf locus the limit cycle has
an elliptic form and ξmax(t) and wmax(t) are harmonic functions with the period of
oscillations governed by the frequency of oscillations of the unstable modes of the
linear stability problem (Gubernov et al. 2008b).

As we move away from the Hopf locus in the parameter space by increasing the
activation energy the limit cycle expands in the (ξmax, wmax) plane and deforms
to a triangular form. At the same time in the Fourier time series of wmax the high
order frequencies, which are multiples of the basic frequency T−1, become signifi-
cant. Further increase of β, while keeping the other parameters fixed, leads to the
emergence of the period 2T solutions as a result of the period doubling bifurcation
at β1. In the (ξmax, wmax) plane these solutions correspond to two-loop trajecto-
ries, the Fourier spectrum is shown to include the lines with both the multiples
of T−1 and (2T )−1, and the Poincaré map consists of two points. Similarly, for
higher values of activation energy we find the second and third period doubling
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bifurcations at β2 giving birth to period 4T solutions and β3 leading to period 8T
solutions which correspond to four and eight points map on Poincaré map respec-
tively. The distance between successive bifurcations βi+1 − βi decays according to
the Feigenbaum universal cascade (Feigenbaum 1978) with the Feigenbaum con-
stant estimated from the numerical data as δ = 4.7 ± 0.1. Based on the knowledge
of the critical parameter values β1,2,3 and by assuming that the sequence of period
doubling bifurcations follow the Feigenbaum scenario the boundary of chaotic re-
gion β∞ is estimated. If the parameter values are taken above this boundary the
dynamics of the system becomes chaotic and is characterized by the continuous
Fourier spectrum of wmax(t), irregular distribution of the points of the Poincaré
map and positive maximum Lyapunov exponent. The boundary of the chaos onset
obtained from the Lyapunov exponents calculations agrees well with the estimate
based on the Feigenbaum scenario.

The period iT solutions (i = 1, 2, 4, ...) as well as chaotic solution propagate
with certain average speed ci and can also be described by an instant speed, c̃i, of the
pulsations of the wave front location in the co-moving coordinate frame travelling
with c. Here we denote the index i to each solution branch, i.e. i = 0 to travelling
wave solution, i = 1 to solution of period T etc. On the c vs β plane the solution of
period T emerges from the travelling solution branch at the Hopf bifurcation point
and each sequential solution branch ci of period iT originates from the previous
branch at the point of corresponding period doubling bifurcation so that ci(β)
form the tree like structure. All solution branches ci(β) are monotonically decaying
functions of activation energy moreover the pulsating solutions on average always
travel with the speed smaller than the flame speed corresponding to the travelling
wave solution. We demonstrate that such a decay of the flame speed is very sensitive
to the increase of β i.e. small variations of the activation energy results in significant
change in c values.

The width of chaotic region along β is limited by the extinction of the propa-
gating flame. As β is increased over β∞ the strange attractor is formed, however at
certain value of activation energy, βe, the propagating chaotic solution disappears
and the flame extinguishes to a trivial stationary state u = 0, v = 1, and w = 0.
This phenomenon is known in the literature as chaotic transient. As the activation
energy is increased above β∞ the basin of attraction of the strange attractor changes
and at a certain value βe it becomes connected due to the unstable-unstable pair
bifurcation with the basin of attraction of the regular attractor - the trivial solu-
tion. In this case the initial conditions taken in the form of the propagating solution
evolves similarly to chaotic waves, however at a certain moment of time it enters
the basin of attraction of the trivial state and the combustion wave extinguishes.
The collapse of the chaotic oscillations occurs in an abrupt and random manner.
Our studies of the statistical properties of this process indicate that the life time of
the transient is described by the exponential distribution. The average life time τ
is very sensitive to the variations of control parameters, which is rather common to
supertransients. However, the quantitative description of the extinction limit and
chaotic transient characteristics are the subjects of our future work.

The location of the regions of parameters with various types of pulsating so-
lutions are found in the parameter space. It is demonstrated that in the (LA, β)
plane they are situated along the Hopf bifurcation locus in the form of narrow
strips which expand with increasing LA and shrink to a point corresponding to
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the Bogdanov-Takens bifurcation of the travelling wave solution as LA → 1. More
formally this can be formulated as βi+1 − βi vanishes for LA → 1 and mono-
tonically grows as LA increases. This conclusion correlates with the experimental
observations that pulsating waves of periods 1T , 2T and 4T are readily observed in
solid phase combustion, where LA ≫ 1 and the width of the regions in parameter
space corresponding to various pulsating solutions is relatively high. In contrast for
LA ∼ 1 even the period T solutions exist for such a narrow region in the parameter
space that the experimental observation of one-dimensional pulsating waves is not
possible in practice. The distance between the successive bifurcations, βi+1 − βi,
vanishes in an exponential manner as the index i is increased. The structure of the
parameter space in the regions where the pulsating solutions with periods higher
than 2T exist is complex. A small variation of parameters here can lead to a change
of the type of solution and even to extinction. Our preliminary studies of the extinc-
tion phenomenon show that the width of the chaotic region is small in comparison
to the width of the region where the unstable travelling wave exist i.e. the region
between the Hopf and fold bifurcations. Therefore, we expect that the pulsating
solutions extinguish before the travelling wave solution branch ceases to exist in
the space of parameters. In future we plan to investigate in detail the route to
extinction via chaotic oscillations.
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