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In this paper the steady planar travelling waves in the adiabatic model with two-
step chain branching reaction mechanism are investigated numerically. The properties
of these solutions are demonstrated to have similarities with the properties of non-adi-
abatic combustion waves that is, there is a residual amount of fuel left behind the trav-
elling waves and the solutions can exhibit extinction. It is also shown that the model
possesses a new type multiple travelling wave solutions (which we call wave trains) with
complex structure of the profiles and varying speeds.
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1. Introduction

Combustion waves have been studied for some time and are topic of a review
[1]. They have been observed in numerous experiments [1] and play an important
role in industrial processes, such as one of the current technologies for creating
advanced materials: Self-propagating High-temperature Synthesis (SHS) [2].

To date only the simplest models of these phenomena, which use one-step
chemistry, have been comprehensively analysed. In these models it is assumed
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that the reaction is well modelled by a single step of fuel (F ) and oxidant (O2)
combining to produce products (P ) and heat. The generic kinetic schemes of
models with one-step chemistry are: F −→ P + heat or F + O2 −→ 2P+heat ,
where the temperature dependent rate of the reaction is given by Arrhenius
kinetics k(T ) = e−Ta/T and Ta is the activation temperature.

These models have proven their usefulness since they are relatively simple
and allow analytical investigation using asymptotic methods in the limit of infi-
nitely large activation temperature [3,4]. Finally, the most important feature of
one-step models is that they have led to many useful and qualitatively correct
predictions for phenomena such as: ignition, extinction and stability of diffusion
flames; propagation and stability of premixed flames; flame balls and their sta-
bility; structure and propagation of flame edges etc.

However in the overwhelming majority of cases, the chemical reactions in
flames proceed according to a complex mechanism, that involves a variety of
different steps [3]. Moreover for many reactions, models with simple one-step
kinetics may lead to erroneous conclusions as noted in [5]. In other words, if we
want to obtain a realistic description of the flame kinetics several different steps,
each with its own intermediate chemical species, have to be taken into account.
As a result the analysis of models involving several reactions is far more difficult
than that required for the one-step models which can often be comprehensively
analysed using established methods.

Several models involving two chemical steps have been considered previ-
ously [3] and more recently [6,7]. These include several classes of models with
two-step kinetics such as models with chain branching [3], fuel decomposition [3,
6], inhibition of flames by an endothermic reaction [7] etc. However these mod-
els have received very little attention from an analytical prospective since the well
established methods (like asymptotic methods) allow the investigation only in
very special cases when these models can be substantially simplified. Neverthe-
less the numerical analysis carried out in [7] (where the inhibition of flames by an
endothermic reaction is studied) showed significant differences between the prop-
erties of the solutions to the models with one- and two-step chemistry such as,
for example, existence of multiple (three) solutions for certain parameter regions.
Since the behaviour of multi-step models can differ from their one-step proto-
types we can expect a number of new phenomena such as bistability to be found
as a result of such analysis.

The aim of the current paper is to investigate the properties of flames with
complex kinetics which are described by the model with two-step chain branch-
ing reaction [3]. This model has practical applications in simulating the hydrogen
oxidation [3,8] and is known to exhibit travelling front solutions [3]. However, to
the best of our knowledge, the properties of the travelling front solutions have
not been studied in detail. Moreover until now the existence of other types of
travelling wave solutions distinct from the travelling fronts which are known to
exist in the models with single step reaction was unclear. Here we show that
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increasing complexity of the model to include the two-step reaction mechanism
can result in a drastic change of the properties of the system: namely coexis-
tence of multiple travelling wave solutions for some parameter values. In contrast
to [7], where coexistence of pulse and front solutions have been observed, these
new solutions are not pulses, but wave trains with several humps. Similar solu-
tions were also observed in different reaction-diffusion systems [9]. However to
the best of our knowledge they have never appeared in the combustion literature.

The rest of the paper is organized as follows. In the next section we intro-
duce the governing partial differential equations for the model under investiga-
tion in dimensional and non-dimensional form. In Section 3 these equations are
reduced to the system of ordinary differential equations for the travelling wave
profiles. Section 4 is devoted to the investigation of the properties of the trav-
elling front solution, which is common for both one- and two-step models. The
travelling wave trains, which are specific for the model studied in this paper, are
investigated in Section 5. Finally, in Section 6 the conclusions and final discus-
sions are presented.

2. Model

We consider an adiabatic model (in one spatial dimension) that includes
two steps: autocatalytic chain branching A+B→2B and recombination B+M→
C+M. Following the work of [3] and [6] we assume that all the heat of the reac-
tion is released during the recombination stage and the chain branching stage
does not produce or consume any heat. As noted in [3], in this scheme recombi-
nation stage serves both as an inhibitor which terminates the chain branching
and an accelerant which produces heat. According to [6], equations governing
this process can be written as

ρcp

∂T

∂t
= k

∂2T

∂x2 + ρQArYB,

∂YA

∂t
= DA

∂2YA

∂x2 − ABYAYBe−E/RT , (1)

∂YB

∂t
= DB

∂2YB

∂x2 + ABYAYBe−E/RT − ArYBρ/M,

where T is the temperature; YA and YB represent the concentrations of fuel and
radicals respectively; ρ is the density; cp is the specific heat; M is the mean
molecular weight; DA and DB represent the diffusivities of fuel and radicals
respectively, Ar and AB are constants of recombination and chain branching
reactions respectively; Q is the heat of the recombination reaction; E is the acti-
vation energy for chain branching reaction; R is the universal gas constant.
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We introduce the non-dimensional variables

t ′ = ρQABR

cpME
t, x ′ =

√
ρ2QABR

kME
x, u = RT

E
, v = YAM

ρ
, w = YBM

ρ
,

(2)

and we rewrite (1) as

ut = uxx + rw,

vt = τAvxx − βvwe−1/u,

wt = τBwxx + βvwe−1/u − rβw,

(3)

where primes have been dropped and the following non-dimensional parameters
have been introduced: β = cpE/QR, r = Ar/AB , τA,B = ρcpDA,B/k. Equations
(3) are considered subject to the boundary conditions

u = 0, v = 1, w = 0 for x → ∞,

ux = 0, vx = 0, w = 0 for x → −∞.
(4)

On the right boundary we have cold (u=0) and unburned state (v = 1), where
fuel has not been consumed yet and no radicals have been produced (w = 0).
We also take the ambient temperature to be equal to zero. As noted in [10] this
is a convenient way to circumvent the so-called “cold-boundary problem” and
it does not change the generic behaviour of the system. On the left boundary
(x → −∞) neither the temperature of the mixture nor the concentrations of fuel
can be specified. We require that there is no reaction happening so the solution
reaches a stationary point of (3). Therefore the derivatives of u, v are zeros and
w = 0 for x → −∞.

3. Travelling wave solutions

We seek a solution to the problem (3), (4) in the form of a travelling wave
u(x, t) = u(ξ), v(x, t) = v(ξ), and w(x, t) = w(ξ), where we have introduced
ξ = x − ct , a coordinate in the moving frame and c, the speed of the travelling
wave. Substituting the travelling wave solution into the governing equations we
obtain

uξξ + cuξ + rw = 0,

τAvξξ + cvξ − βvwe−1/u = 0, (5)

τBwξξ + cwξ + βvwe−1/u − rβw = 0.

and boundary conditions

u = 0, v = 1, w = 0 for ξ → ∞,

uξ = 0, vξ = 0, w = 0 for ξ → −∞.
(6)
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Following [3,6,7] we consider the case when Lewis numbers for the fuel and the
radicals are equal to unity. Although this assumption simplifies the problem sig-
nificantly, it still allows the investigation of the generic properties of the system
(5) and (6).

In the case τA = τB = 1 equations (5) possess an integral S=βu + v + w.
Using S and first boundary condition in (6) equations (5) can be reduced to a
system of two second order equations for temperature and fuel concentration

uξξ + cuξ + r(1 − βu − v) = 0,

vξξ + cvξ − βv(1 − βu − v)e−1/u = 0.
(7)

On the right boundary we require that u = 0 and v = 1, whereas on the left
boundary (ξ → −∞) we modify the boundary conditions as follows

u = β−1(1 − σ), v = σ, (8)

where σ denotes the residual amount of fuel left behind the wave and is yet
unknown. We note here that at first glance system (7) looks very similar to
equations describing the dynamics of the one-step adiabatic reaction model [10].
However, in contrast to the one-step case, equations (7) do not have integral,
which allows further simplification [10]. Moreover boundary conditions (8) sug-
gest that there can be some fuel left behind the reaction zone, which is impossi-
ble in the case of a one-step adiabatic reaction model.

4. Classical travelling front solution

We solve equations (7) numerically using shooting and relaxation meth-
ods as described in [4]. As a first step we solve equations (7) employing the
fifth-order Runge–Kutta method on the interval ξ ∈ [−L1, L2], where L1,2 > 0
are taken to be sufficiently large. Our numerical integrator allows the estimation
of the local relative error, which has been set to be less than 10−5 in our calcu-
lations.

As a second step the solution obtained with the shooting method is used
as the guess solution for a more accurate method; namely relaxation (see [4] and
references within for the detailed description of the method). The relaxation rou-
tine allows the control the average local correction made on each iteration step.
The solution is considered to be resolved if the correction is less than 10−15.

Combination of the shooting and relaxation methods allows us to obtain
the solution to (7) with high degree of accuracy. This was tested by changing the
step of the grid and comparing the resulting variations in the values of the inter-
nal parameters of the problem such as the speed. For example, a fourfold mesh
refinement changes the value of c only in the ninth significant digit.

The numerical methods described above allow us to obtain the dependence
of the speed of the travelling front on the parameters of the problem r and
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Figure 1. Speed of the front as a function of β for various values of r.

β. In figure 1 we plot c as function of β for r = 0.1, 0.01, and 0.005. At
first glance the dependence of c on β resembles the behaviour of the speed of
the front for the model with one-step reaction scheme, which was studied in
[4]. Namely, c reaches maximum for some value of β and decays monotonically
as we increase (or decrease) β from the value corresponding to the maximum.
However more detailed investigation shows that there is a substantial difference
between the prediction of one- and two-step models. In particular for the model
with one-step reaction mechanism the travelling front solution exists for any
value of β and decays exponentially to zero as we increase β. This is not the case
for the model with two-step reaction mechanism. In figure 2 we plot the loga-
rithm of the speed as a function of parameter β for r = 0.001. It is clearly seen
that the speed of the front does not follow the exponential law for large values
of β as is the case for the one-step model. Moreover c(β) exhibits a critical type
of behaviour: as we increase β up to some critical value βc = 4.2 . . . the speed
of the front decays rapidly and it appears that the travelling front solution ceases
to exist for β > βc. On the other hand the difference between the one-step and
the two-step models is strengthened by the fact that there is residual amount of
fuel left behind the front in the case of the two-step model, which is identically
equal to zero in the case of the one-step adiabatic model. In figure 3 we plot σ

as a function of β for r = 0.01, 0.005, and 0.001. The residual amount of fuel
increases monotonically with β. It is interesting to note that σ becomes signifi-
cant as we approach the critical value βc for fixed r.

To some extent the properties of the two-step adiabatic model, which
is studied here, resemble the properties of the non-adiabatic one-step model,
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Figure 2. Logarithm of speed of the front as a function of β for r = 0.001.

Figure 3. Dependence of σ on β for various values of r.
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investigated in [11]. This is expected since the recombination step works as an
inhibitor of the chain branching reaction and to certain extent plays the same
role as the heat exchange with the surrounding in the one-step non-adiabatic
model. In both cases there is a non-zero residual amount of fuel left behind
the reaction zone. The similarity between these two cases is also strengthened by
likeness of the behaviour of the speed of the front as a function of the param-
eter β. Namely, in both one-step non-adiabatic and two-step adiabatic models
the travelling front solution cease to exist as we approach some critical value of
βc (in combustion literature this event is usually called extinction [11]). However,
the route to extinction in these models appears to be different. In the case of
the one-step non-adiabatic model for given parameter values there are either two
solution branches with different speeds or no solutions. The extinction occurs
when the two solution branches meet each other (this event is also known as a
turning point or a saddle node bifurcation). For the two-step reaction mecha-
nism the extinction occurs when the speed of the front drops down to zero as
we approach the critical parameter values as shown in figure 2.

In figure 4 the speed of the front is plotted as a function of parameter r

for β = 0.5. Qualitatively the behaviour of c(r) is described in [3]. For r = 0
there is no heat release, the temperature does not grow and the speed of the
front is negligible. When r is small the recombination step works as an accel-
erator of the chain branching and the speed of the front grows. For large values
of r the recombination reaction starts to work as an inhibitor and therefore c(r)

decreases.

Figure 4. Speed of the front as a function of r for β = 0.5.
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5. Travelling wave train solutions

In the previous section we have discussed the differences between the
predicted flame behaviour obtained with the one- and two-step models. In both
models the travelling combustion fronts have one common property: temper-
ature and fuel concentration are monotonic functions of coordinate ξ . Per-
haps the most significant property of the two-step model studied in this paper
which distinguishes it from both adiabatic and non-adiabatic one-step combus-
tion schemes is the coexistence of several (more than two) travelling wave solu-
tions such that u(ξ) and v(ξ) are no longer monotonic functions. Travelling wave
solutions in a form of a pulse (which are described by non-monotonic functions
of coordinate) are investigated in [7] for the model with two-step reaction mecha-
nism (one of the steps is exothermic and the other step is endothermic reaction).
However in this paper we demonstrate the existence of travelling wave solutions
such that u(ξ) and v(ξ) are not monotonic functions and these solutions are not
pulses. In what follows we refer to them as wave trains. We can find no evidence
that such solution structures have ever been reported in the combustion litera-
ture. Schematically a wave train can be imagined as a combination of the front
and one, two or more pulse solutions. The whole wave structure travels with a
certain speed ci which is in general different from the speed of the combustion
front. Here we use the index 1 to refer to the wave train solutions consisting of a
front and a single pulse, index 2 to denote the wave train solutions consisting of
a front and a two pulses and so on. In figure 5 we demonstrate solution profiles
with different structures: (a) and (b) correspond to type 1 solutions; (c) and (d)
show type 2 solutions. These solutions are plotted for various values of β: figures
(a) and (c) for β=1.28 and (b) and (d) for β=2.37. The solution profiles shown
in figure 5 do not seem to satisfy the right boundary conditions, since we plot
solutions on only a part of the integration interval in order to demonstrate the
inner structure of the solution profiles. Over the full interval of integration used
in our numerical scheme u(ξ) and v(ξ) approach the limiting values to within
the error tolerance 10−15. These solutions have been computed with different grid
spacing, and domain size (L1 and L2) and are entirely consistent hence we do
not believe that they are numerical artifacts.

The structure of wave train solutions consists of several regions. Similar
to the travelling front solution there is a preheat zone in front of the com-
bustion wave where the fuel has not been consumed yet and the temperature
slowly increases; behind the combustion wave there is a product region where
the temperature is reaching a maximum value and fuel is not consumed. As
shown in figure 5, in contrast to the travelling front, the region between the
preheat and the product zone is constituted of several alternating regions where
fuel consumption becomes more or less intensive. This process is accompanied
by variation of the temperature along the complex structured inner region. The
temperature reaches a local maximum in the regions where fuel is burned more
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(a) (b)

(c) (d)

Figure 5. Temperature (solid lines) and fuel (dashed lines) profiles for r = 0.01 and various values
of parameter β: β = 1.28 in figures (a) and (c); β = 2.37 in figures (b) and (d).

effectively so that the fuel concentration drops down approaching a local mini-
mum. The regions where the fuel consumption is more effective (with maximum
of the temperature and minimum of the fuel concentration) are intermitted with
the zones where the fuel consumption is less effective so that u and v are reach-
ing local minimum and maximum respectively.

As we decrease β the local temperature peaks become higher and the fuel
concentration troughs become lower as shown in figure 5(a, c). The wave train
starts to look like well separated front and one or more pulses travelling ahead
of the front solution. In the opposite limit, as we increase β up to the values
close to the extinction value βc the solution profiles flatten and approach the
shape of the travelling front. The overall change of temperature and fuel con-
centration in the region with alternating behaviour gets smaller in comparison
with the maximum values of u and v as shown in figure 5(b, d).

In figure 6 we plot the difference between the speed c1 of the travelling wave
train of type 1 and the speed of the classical travelling front solution c as a func-
tion of β for r = 0.001. Figures 4 and 6 indicate that the solution branches c1(β)

and c(β) are located close to each other on the c versus β plane. For some value
β1 ≈ 3.1 . . . the difference c−c1 equals zero. So in this case there exist two solu-
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Figure 6. Dependence of c − c1 on β for r = 0.001 showing the difference between the classical
travelling wave solution and the type 1 solution.

Figure 7. Dependence of c1 − c2 on β for r = 0.001.

tions travelling with the same speed (although the residual amount of fuel left
behind the reaction is different σ1 �= σ ).

In figure 7 we plot variation of c1 − c2 with β for r = 0.001, where c2 is
the speed of the travelling wave train of type 2. Comparing figures 4, 6 and 7
we conclude that the distance between the solution branches ci(β) and ci+1(β)
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is getting smaller with increasing index i, which we use to distinguish the wave
train solutions as described previously. Although not shown here the same pat-
tern was observed for the wave trains of type 3 (i.e. i = 3) and 4 (i.e. i = 4)
which we are able to obtain numerically. Functions c(β) and c2(β) intersect at
some value β2 close to β1 for which c = c1. In this case there exist two solutions
with the same speed (c = c2) and different values of the residual amount of fuel
(σ �= σ2). It also follows form figure 7 that curves c1(β) and c2(β) intersect for
two different values of β1

1 ≈ 2.6 . . . and β1
2 ≈ 3.4 . . . . This implies again that for

these values of β there exist two travelling wave trains with the same speed and
different values of residual amount of fuel (σ1 �= σ2).

As parameter β is increased up to the extinction value βc the velocities of
the wave trains of various types approach zero. It appears that the wave trains
cease to exist at the same value βc for which there is extinction of the travelling
front solution.

6. Conclusions

In this paper we study the properties of the steady planar travelling waves in
the model with two-step chain branching reaction mechanism, which was intro-
duced in [6]. The main focus of our work is to investigate what new features does
this model of flame propagation predicts, that cannot be observed by using the
one-step reaction scheme.

For the one-step adiabatic model there exists a single travelling wave solu-
tion in a form of the combustion front for any parameter values. All fuel is con-
sumed during the reaction and the temperature behind the reaction zone reaches
its maximal value. It has been known [3] that the two-step counterpart of this
model with chain branching exhibits the analogous travelling front solution as
well. Numerical analysis carried out in this paper has shown that the properties
of the combustion front for the one- and two-step adiabatic models are differ-
ent from each other. In the latter case the presence of the intermediate species
such as radicals, which are produced during the recombination step, effects the
flame propagation in two similar ways to the influence of the heat loss on the
combustion waves in the model with one-step reaction mechanism: (i) there is a
residual amount of fuel left behind the reaction; (ii) the travelling front solution
exists only in a certain parameter region.

The most striking difference between the models with one- and two-step
chain branching reaction mechanism is the coexistence of multiple solutions in
the latter case. In this paper we have found that besides the conventional trav-
elling combustion front which can be observed in both models, the model with
chain branching possesses a set of solutions of more complex structure, which
we call travelling wave trains. These new solutions profiles are not pulses and
they differ from each other by the number of local temperature maxima reached
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in the process of wave propagation. We have studied the properties of the wave
trains numerically. It appears that the wave train solutions exist only in some
parameter regions. On the boundary of this region the solutions cease to exist
due to extinction. The investigation of speed of the wave train solutions has
revealed that for certain parameter values there can be two solutions travelling
with the same speed (however these solutions have different residual amount of
fuel left behind the reaction).

The existence of wave trains raises a number of questions that we hope to
address in the future. It is not clear how many solutions can the model possess
for a given set of parameter values (we were able to obtain five). It would be
extremely interesting to investigate the stability of these solutions and to deter-
mine which of them can be physically observed etc.

To summarize, we believe that the current paper clearly demonstrates that
by taking into account more complex reaction schemes than just a simple
one-step model results in dramatic changes to the properties and behaviour of
the propagating flames. We hope that the present work will further boost the
interest of the combustion community to the investigation of the models with
multiple-step reaction mechanisms such as chain branching, fuel decomposition
etc.
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