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Abstract 

We consider travelling wave solutions of a reaction-diffusion system corresponding to a 
single-step homogeneous premixed combustion scheme competitively coupled with an 
endothermic reaction. Properties of the travelling combustion fronts, such as the wave 
speed and the burnt temperature are derived numerically over a range of different 
parameter values, such as those describing the relative enthalpies, rates and activation 
energies of the endothermic and exothermic reactions. Unique combustion wave 
solutions are shown to exist for each distinct combination of the parameter values. These 
solutions are linearly stable if the heat release from the exothermic reaction is 
sufficiently large, otherwise the combustion waves develop pulsation. In particular, 
using a finite element package to numerically integrate the governing partial differential 
equations, period-1 and period-2 type oscillatory behaviour was observed prior to wave 
extinction. 
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1.  Introduction 

This work concerns the existence and propagation of reaction fronts through reactive 
media where diffusive processes are present and where a main exothermic reaction is 
accompanied by an endothermic reaction as well. A number of authors have addressed 
problems where an independent endothermic process affects the progress of a 
combustion front [Gray et al. 2002, Please et al. 2003, Simon et al. 2003, 2004, and 
references therein]; our concern in this paper is with the possibility of competitive 
endothermic and exothermic reactions, where the same reactive material provides the 
feed for both reactive steps [Hmaidi et al. 2010].  

Though most observed physico-chemical phenomena are a consequence of several, often 
numerous, concurrent or consecutive reactive processes, some of which are exothermic 
and some endothermic, and a full representation of even the simplest reaction usually 
comprises a large number, perhaps hundreds, of individual step, much useful 
understanding may often be gained by considering much simpler “lumped” models 
which reproduce the essential phenomenology. In some cases, notably when thermal 
effects are prominent in the process, the simplest useful model comprises a pair of 
reactions, one exothermic and one endothermic, characterised by different chemical 
kinetics. These reactions may feed on the same unique reactant material, so-called 
competitive reactions, or each reaction may independently consume a different reactant, 
so-called parallel reactions [Ball et al. 1999]. In the parallel case the coupling between 
the reactions is solely thermal, whereas in the competitive case there is a second 
coupling through the reactant consumption.  

In contrast to the case of parallel reactions, which has been widely studied as 
exemplified in the references above, competitive reactions, which are often appropriate 
to model decomposition or pyrolysis processes [Antal and Varhegyi 1995; Wu et al. 
1994], have received little attention, though a study by Calvin et al. [1987] established 
the existence of combustion wave multiplicity in the case of competing exothermic 
reactions. Whereas, in the parallel case, the net enthalpy production by complete 
consumption of both reactants is uniquely determined, this is not true for competitive 
reactions, where the net production depends on the full time history of the process; if the 
temperature is kept relatively low, by thermal diffusion or other extraneous effect e.g. 
Newtonian or radiative cooling, the net production may be, counter-intuitively, actually 
increased. This result will be discussed elsewhere [Hughes et al. 2011, in preparation] in 
the context of initiation and self-propagation of combustion fronts in the presence of 
both competitive and parallel endothermic effects..   

Hmaidi et al. [2010] have investigated the existence and stability of travelling one-
dimensional reaction fronts propagating through a solid reactive slab (infinite Lewis 
number), effectively extending the work of Matkowsky and Sivashinsky [1978] to the 
case where heat is lost through a competitive endothermic reaction term. The behaviour 
of the competitive system was modelled by regarding the endothermic reaction as a 
perturbation to an exothermic reaction. This necessitated some restrictions on the 
ordering of the kinetic parameters of the endothermic step. Specifically, the endothermic 
reaction was assumed to have larger activation energy than the exothermic reaction and a 
pre-exponential frequency term much greater than that for the exothermic reaction. 
These assumptions about the relative magnitudes of the pre-exponential frequencies and 
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the activation energies enabled a large activation energy analysis to be adopted and 
analytical solutions to be calculated for the burning rate. The analyses also established 
the existence of regions of oscillatory instability for a number of practical cases. 
However, the assumptions restricted the analyses to particular regions of the kinetic 
parameter space. 

The purpose of the work reported here is therefore to explore the behaviour of 
competitive systems over a wider range of values of chemical kinetics and other physical 
properties of the reactant material and its products. We again consider propagation of a 
burning front in a reactive material in which the driving exothermic reaction competes 
with an endothermic reaction which consumes both reactant and heat within the system. 
Our competitive scheme, similar to that first considered by Hmaidi et al. [2010], neglects 
heat loss through physical processes such as radiation and conduction, where heat loss is 
typically modelled by inclusion of Newtonian cooling, or quenching effects through 
endothermic reactions that occur in parallel or in sequence with the exothermic 
combustion reaction. It does, however, include diffusion of reactant as well as heat, so 
that Lewis number effects may be exposed, and lifts the restrictions on the activation 
energy and pre-exponential frequency of the endothermic reaction. 

2. Problem description and mathematical modelling 

Since our main purpose is to explore the qualitative phenomenology of competitive 
reaction processes, we adopt a simple physico-chemical description of the propagation of 
a burning front through a reactant in one spatial dimension with combustion described 
by the kinetic scheme: Reactant → P1 + heat. Additionally, we suppose that heat is lost 
through a competitive endothermic chemical pathway: Reactant → P2 - heat. A real 
world example of such a configuration would be a long, insulated cylinder containing a 
solid fuel undergoing a decomposition reaction, with an appropriate a priori averaging 
over the transverse spatial dimension of the reaction front.  

Such a configuration has, for example, been used in laboratory experiments on the 
burning of ammonium nitrate (AN), in the context of emulsion explosives [Turcotte et al 
.2008; Chan and Turcotte 2009]. The extensive literature on the dissociation of AN 
reveals a surprising variety of representations of the chemistry involved. Common to 
virtually all, however, is the phenomenon of competitive processes feeding on the same 
initial AN resource. Importantly, some are exothermic and some endothermic, and it has 
been common to assume a lumped representation of just two competing processes, one 
endothermic, for example [Sinditskii et al, 2005] 
 

33 HNONHAN +→  

 
and one exothermic 
 

OHONAN 22 2+→  
 
In numerical simulations of the ignition of AN [Hughes et al. 2011], self propagating 
fronts were not found when values of the kinetic parameters appropriate for ‘pure’ AN 
were used; this is in accord with the extensive literature on AN combustion. However, 
for values modified to take a crude account of the effect of additives [Chan and Turcotte 
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2009], such travelling combustion fronts were observed to develop for wide ranges of 
initial conditions and parameter values.   
 
2.1 Mathematical model 

Following Hmaidi et al. [2010], we consider a system of reaction diffusion equations 
describing the combustion dynamics. Unlike Hmaidi et al. [2010], however, we allow for 
the possibility of a non-solid reactant and diffusion of the reactant species. We assume 
that the reactant undergoes two competitive reactions, one exothermic and one 
endothermic, and that the reaction products are chemically inert and have no effect on 
physical properties such as diffusivities. In practice this will rarely be true, but in the 
spirit of our exploratory investigation we leave refinements of the model for the future. 

Arrhenius kinetics are assumed for both reactions, with the endothermic reaction kinetics 
characterised by the activation energy E1, the pre-exponential factor A1 and heat release  
�Q1 < 0. The exothermic reaction drives the combustion and is characterised by the 
activation energy E2, the pre-exponential constant A2, and heat release Q2 > 0. 

The governing equations for the system described above are then simply the heat and 
mass balance equations accounting for reaction and diffusion of heat and reactant. 
Similar equations can be found in Calvin et al. [1987]. 
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Here T and C denote the temperature and reactant mass fraction, respectively. Time and 
space coordinates (in the laboratory frame) are denoted by t and x, ρ is the density 
(assumed constant), k is the thermal conductivity, D is the coefficient of mass diffusion, 
R is the universal gas constant and cp is the heat capacity at constant pressure of the 
reactant. 

From the mathematical viewpoint it is convenient to consider a non-dimensional version 
of the system (2.1.1, 2.1.2). We therefore introduce the dimensionless temperature and 
space and time coordinates: 
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Writing the system (2.1.1, 2.1.2) in terms of (2.1.3) and omitting the primes, the 
following dimensionless system of equations is obtained: 
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The new parameters Θ, q, f, r and Le are defined as follows: 
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We will refer to the parameter Θ as the exothermicity parameter, q as the ratio of heats, f 
as the ratio of activation energies, r as the ratio of rate constants and Le as the Lewis 
number. We note in particular the similarity of the parameterisation (2.1.6) with that of 
Please et al. (2003). We also note for reference that the important ‘channelling 
parameter’ β defined in Hmaidi et al. (2010) can be written in terms of (2.1.6) as 
 

)1( += qrβ                                                    (2.1.7) 
 

As discussed by Hmaidi et al. (2010) this parameter reflects the degree to which the 
endothermic and exothermic reactions compete with one another. 
 
2.2 Travelling wave formulation 

Assuming that the temperature and reactant concentration profiles that constitute the 
combustion fronts may be realised as stationary planar waves, it is natural to consider the 
model problem in terms of the frame of reference that moves with the combustion front. 
We therefore seek solutions to (2.1.4, 2.1.5) in the form of stationary fronts moving with 
a speed v, namely 
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where ξ = x – vt is a coordinate in the frame moving with speed v. Invoking this 
travelling wave ansatz we obtain two ordinary differential equations: 

 
 ( ) 0//1 =−++ −− ufu erqeCvuu ξξξ                               (2.2.1) 

( ) 0//11 =+Θ−+ −−− ufu ereCCvCLe ξξξ                               (2.2.2) 
 
Introducing Y = uξ and W = Cξ to denote the derivatives of the temperature u and reactant 
concentration C, we may write the system (2.2.1, 2.2.2) as a first-order system of 
ordinary differential equations over R4. 
 

 Yu =ξ                                                                            (2.2.3) 

( )ufu erqeCvYY //1 −− −−−=ξ                                          (2.2.4) 

WC =ξ                                                                           (2.2.5) 

( )( )ufu ereCvWLeW //1 −− +Θ+−=ξ                                 (2.2.6) 
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The system (2.2.3 – 2.2.6) is considered over an infinite domain and is supplemented 
with the following boundary conditions, where we have used U = (u, Y, C, W)T for 
notational brevity: 

( ) −∞→=→ − ξas0,0,0, T
buUU                               (2.2.7) 

( ) +∞→=→ + ξas0,1,0,0 TUU                               (2.2.8) 
 
The boundary condition (2.2.7) corresponds to the burnt region where all the reactant has 
been consumed. The ‘burnt temperature’ ub is treated as a free parameter. The boundary 
condition (2.2.8) corresponds to the unburnt region where the reactant has yet to be 
consumed and the temperature is at its ambient value, in this case zero. The assumption 
of zero ambient temperature is assumed here to circumvent the cold boundary problem, 
which has been discussed by many authors (e.g. see discussion in Weber et al. [1997]). 
The model considered here also differs from that considered by Hmaidi et al. [2010] in 
that the initial reactant mass fraction is equal to unity due to the nondimensionalisation. 

 
2.3 Numerical scheme 

Solutions to the system (2.2.1, 2.2.2) are obtained through numerical solution of the 
associated first order system (2.2.3 – 2.2.6). Linearization of (2.2.3 – 2.2.6) about  
yields the set of eigenvectors: 

+U
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Similarly, linearization of (2.2.3 – 2.2.6) about  yields the set of eigenvectors: −U
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We note in particular that Ω2 > 0. 

For fixed values of the parameters v, q, f, r and Le the system (2.2.3 – 2.2.6) is first 
considered as an initial value problem over [0, L], where L is sufficiently large, with 
initial conditions given by 

−− += 10 kUU ε                                                   (2.3.6) 
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where ε is a sufficiently small fixed parameter, which defines a small departure from the 
unstable point along the unstable direction defined by . −U −

1k
The parameters Θ and ub are considered as free parameters and are adjusted through 
application of a shooting algorithm based on the standard fourth-order Runge-Kutta 
integrator. The shooting algorithm is applied with an initial guess for the values of Θ and 
ub. The parameters are then adjusted accordingly and the process repeated until the 
solution at ξ = L fits the corresponding boundary conditions to a specified accuracy. 

The solution obtained through implementation of the shooting algorithm is then refined 
using a relaxation scheme, which is applied iteratively until a solution with a maximum 
average error of less than 10-15 is delivered. The numerical procedure briefly described 
above is discussed in more detail in Gubernov et al. [2003]. Once an accurate solution 
and its corresponding set of parameters have been found, solutions corresponding to 
nearby parameter values are obtained by slightly varying the values for which the 
solution is known and reapplying the relaxation method, which also provides the updated 
values of the free parameters Θ and ub. Repeating this process enables the determination 
of solutions over a wide range of the control parameters. 
 
3. Combustion wave profiles and properties 

The system (2.2.3 – 2.2.6) was solved numerically using the scheme described above. 
The results were also checked independently by solving the system of partial differential 
equations (2.1.4, 2.1.5) using the finite element package FlexPDETM. Fig. 1 shows 
dimensionless temperature and reactant mass fraction combustion wave profiles for Le = 
1, f = 2, r = 1, v = 0.355 and q = 1, 2 and 4. The corresponding values of the 
exothermicity parameter are Θ = 0.98592, 0.75692 and 0.305770, respectively. An 
interesting feature of the temperature profiles in Fig. 1 is that the burnt temperature 
varies non-monotonically as q is varied. This is indicative of the complex compensatory 
interaction between the endothermic and exothermic reactions that is required to 
maintain a combustion wave of constant speed. Fig. 2a illustrates in more detail how the 
burnt temperature and exothermicity must vary with q to maintain a constant wave speed 
of v = 0.355. We note here for clarity that Θ decreases as the combustion reaction 
becomes more exothermic. Fig. 2a therefore indicates that to maintain a constant wave 
speed as the heat absorbed by the endothermic reaction increases, the exothermic 
reaction must compensate in a way that initially increases the burnt temperature up until 
a point where the endothermic reaction dominates, beyond which the burnt temperature 
decreases rapidly. 

Fig. 2b illustrates how the wave speed varies with the exothermicity parameter for 
various values of the Lewis number. The remaining parameters have been set as follows: 
f = 2, q = 1 and r = 1. The figure indicates that for a specific value of the exothermicity 
parameter, the associated combustion wave has a unique wave speed. This is in contrast 
to combustion waves subject to radiative heat loss, which typically possess two distinct 
wave speeds for each value of the exothermicity parameter [Spalding 1957; Gubernov et 
al. 2004]. The single-valued wave speed seen here is in fact similar to that exhibited by 
adiabatic combustion waves [Gubernov et al. 2003]. This result highlights the 
differences that different heat loss mechanisms can have on the resulting combustion 
wave dynamics.  
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Figure 1. Combustion wave profiles arising in the competitive exothermic-endothermic 
scheme (2.1.1, 2.1.2) for three different values of the ratio of heats: q = 1.0, 2.0 and 4.0. 
The left panel shows profiles of the dimensionless temperature ub, while the right panel 
shows the corresponding reactant mass fraction C. All of the profiles shown have 
dimensionless wave speed v = 0.355. 

 
Fig. 3a illustrates the dependence of the burnt temperature on the ratio of rate constants r 
required to maintain combustion waves of constant speed v = 0.355, for various values 
of the Lewis number. In Fig. 3 we have assumed f = 2 and q = 1. For Lewis number 
sufficiently smaller that unity the burnt temperature decreases monotonically as the ratio 
of reaction rates increases. In contrast if the Lewis number is sufficiently greater than 
unity ub exhibits a monotonic increase as r increases. However, when Le = 1 there is a 
non-monotonic dependence of ub on r. Indeed, Fig. 3b attests to a complex interaction 
similar to that evident in Fig. 2a. In this case, as the rate of the endothermic reaction 
increases in proportion to the rate of the exothermic reaction, the constant wave speed 

Figure 2. (a) Burnt temperature ub and exothermicity parameter Θ plotted against the ratio 
of heats q for combustion waves of constant speed v = 0.355. (b) Wave speed v plotted 
against the exothermicity parameter Θ for different values of the Lewis number Le = 0.1, 1 
and 10.  
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can only be maintained by a compensatory change in the exothermicity. Initially this 
results in a decrease in the burnt temperature to a local minimum. As r increases further 
the burnt temperature increases to a local maximum before the proportional increase in 
the endothermic reaction rate causes the burnt temperature to decrease more rapidly. 

Figure 3. (a) Burnt temperature ub plotted against the ratio of heats q for combustion 
waves of constant speed v = 0.355. (b) Same as panel (a) but zoomed in to illustrate the 
complex dependence of ub on q when Le = 1; also included is the exothermicity parameter 
plotted against q. (c) Burnt temperature ub plotted against the ratio of rate constants r for 
combustion waves of constant speed v = 0.355. (d) Same as panel (c) but zoomed in to 
illustrate the complex dependence of ub on r when Le = 1; also included is the 
exothermicity parameter plotted against r. 
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4.  Stability analysis 

Stability refers to the capacity of a solution of a system of differential equations to re-
establish itself when perturbed. In the physical world there generally exist enough 
sources of perturbation so that the only solutions that can be expected to manifest 
physically are the stable ones. Unstable solutions will generally not be realised in a 
physical sense. Determining the stability of travelling combustion waves is therefore an 
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important issue that has bearing on the types of behaviour that are likely to be observed 
in practice. Moreover, when a solution is unstable, the nature of the instability is 
important in determining the type of behaviour that can be expected. For example, and as 
will be shown, unstable travelling combustion waves can inherit oscillatory behaviour 
due to the presence of a Hopf instability, or Hopf bifurcation, so that ,whilst the 
travelling wave itself will not be observed in the laboratory, a pulsating combustion front 
may be. In other instances the travelling combustion wave will be uniformly unstable 
and will rapidly deteriorate, leaving no possibility of it being observed. 

The stability of the travelling wave solutions to (2.2.1-2.2.2) was assessed using 
FlexPDETM to numerically integrate the corresponding partial differential equations. In 
this initial work only the case f = 2, q = r = 1 is considered. A more comprehensive range 

The travelling reaction front was found to be stable 

of parameter values will be considered in future work.  

for values of the exothermicity 

ber Le ≤ 10. 
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(a) (b) 

Figure 4. Wave speed derived from solution of (2.1.4-2.1.5) using FlexPDETM plotted 
against time for (a) Le = 10, f = 2, q = r = 1, Θ = 7.1, (b) Le = 10, f = 2, q = r = 1, Θ = 
9.16. 

parameter below a certain critical value Θh corresponding to a Hopf bifurcation. For 
example, for Le = 10 the Hopf point was found to be Θh ≈ 7.01. For Θ > Θh the travelling 
reaction front was oscillatory unstable. Fig. 4a illustrates the oscillatory nature of the 
solution for Θ = 7.1, where the wave speed was found to vary periodically between a 
minimum value of 0.0193 and a maximum value of 0.0304. Unlike Gubernov et al. 
[2010], who investigated an adiabatic model with a two-step chain branching reaction 
mechanism, we did not encounter a period doubling route to chaos before extinction. We 
did locate period-2 type oscillations beyond Θ ≈ 7.9. One such example, corresponding 
to Θ = 9.16, is shown in Fig. 4b. For Θ ≥ 9.17 the system exhibits extinction, i.e. 
numerical integration of (2.1.4-2.1.5) did not yield any solutions. However, the exact 
nature of the transition to extinction remains open to further investigation. 

Fig. 5 illustrates the Hopf and extinction loci  for values of the Lewis num
For values of (Θ, Le) to the left of the Hopf curve in Fig. 5, the system possess stable 
travelling wave solutions that propagate with a unique speed. For values of (Θ, Le) in the 
region to the right of the Hopf curve solutions are linearly unstable and various pulsating 
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were observed. For (Θ, Le) in the region to the right of the extinction curve no solutions 

 solutions arising in the presence of a competitive 
trated that a unique travelling wave exists for each 

– the current state of 
ge. Industrial and Engineering Chemical Research, 34, 703-717. 

468. 

– the current state of 
ge. Industrial and Engineering Chemical Research, 34, 703-717. 

468. 

were detected using the FlexPDETM package. As the Lewis number approached unity, 
the Hopf and extinction loci were observed to coincide, with Θh → ∞. 
 
5.  Discussion and Conclusions 

An analysis of combustion wave
endothermic reaction has demons
value of the exothermicity parameter Θ. Numerical integration of the governing partial 
differential equations using a finite element package indicates that the combustion waves 
are linearly stable for values of Θ below a certain value corresponding to a Hopf 
bifurcation. Above the Hopf point Θh the combustion waves were found to be oscillatory 
unstable. As Θ was increased further the oscillatory solutions were found to evolve 
period-2 type behaviour before exhibiting wave extinction. Though the parameter values 
used by Hmaidi et al., and also those used under current investigation by Hughes et al 
differ from those used here, in both cases the incidence of oscillatory behaviour was 
found to occur widely in parameter space for condensed phase competitive reactions 
(infinite Lewis number), which is clearly compatible with the broad parameter range of 
oscillatory behaviour demonstrated for large Lewis number in Figure 5. In future work 
the stability properties of the competitive exothermic-endothermic system will be 
investigated more thoroughly using an Evans function approach. 
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