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Abstract

In this paper the asymptotic and numerical analysis of the combustion wave propagation in the shell-

core composite solid energetic material is undertaken based on the diffusional-thermal model with an overall

Arrhenius reaction step. Flame speed and structure are found for the broad range of parameter values.

Two different regimes of flame propagation are identified. In the weak recuperation regime the temperature

of shell and core are monotonic functions of coordinate, which differ only slightly in the reaction zone of

the flame. In the strong recuperation regime the temperature of the shell is significantly higher than the

temperature of the core. It has a sharp peak in the reaction zone with the maximum value exceeding

the adiabatic flame temperature for pure energetic material. It is found that the highest level of flame

acceleration in the composite material can be attained in the strong recuperation regime. The competition

of these flame propagation regimes may lead to the coexistence of multiple combustion waves traveling with

different velocities. Stability of combustion waves in practically important strong recuperation regime is

investigated.

keywords: combustion waves, thermal-diffusive instabilities, composite energetic materials, flame multi-
plicity

1 Introduction

An increase in the burning rate and stabilization of deflagration in combustion of solid materials are important
goals in a number of practical applications which include the development of propellants for solid thrust engines
[1], high temperature self-propagating synthesis of advanced materials [2], design and engineering of combustion-
based micro-electro mechanical systems [3]. The conventional approaches to the enhancing the burning rate
are focused on increasing the flame surface or modifying the combustion chemistry as described in [1]. Recent
experiments [3, 4] with mirco- and nanosized materials can offer an alternative way to address these issues.

The reported systems are mostly aimed at the mirco-thrust and micro-power generation applications [3, 4].
They consist of two key elements: the inert highly thermo-conductive unit and the reacting material, which
are kept in thermal contact. The role of conducting element is to recirculate heat from the hot products to
the fresh mixture i.e. a well known in gas micro combustion “excess enthalpy” principle is employed here [5].
The idea to increase the flame speed by the use of heat conducting elements was demonstrated in experiments
[6]. However at that time the production of arrays of aligned wires of micro- and nanosize was technologically
not achievable. This hindered the development of composite energetic material based of the heat conducting
matrix.
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In [7] a one-dimensional diffusional-thermal adiabatic model of composite material of shell-core type is
investigated. The enthalpy feedback is provided by highly conductive core and the heat is produced by the
reacting shell material. It is demonstrated that the heat recirculation in such system leads to substantial
increase of normal flame speed, superadiabatic combustion and flame stabilization, which is in qualitative
agreement with the effects observed in gas mirco combustion [8].

In this paper we continue to investigate the propagation of combustion waves in the shell-core composite
solid propellants. We aim to systematically study the speed, structure and stability of deflagration waves in
this system by means of asymptotic and numerical analysis in experimentally feasible parameter range.

2 General formulation

We consider a problem of the planar flame propagation in composite material which is an array of closely
packed shell-core structures [7]. The shell-core structures are considered individually. They are constituted
of similar sized highly heat conductive cylinders, which can be nanowires or nanotubes. The core element of
the structure remains chemically inert. Its main function is to provide recuperation of heat from product zone
to preheat zone of combustion wave. Every conductive wire is wrapped with a cylindrical shell of energetic
combustible solid material of the uniform thickness. The chemical reaction is modeled by an over-all reaction
step that converts solid fuel to products at mass rate proportional to Y with Arrhenius temperature dependence
Ω = BY exp (−E/RT1), where T1 is the temperature and Y is the mass fraction of the energetic material, E
is the activation energy of the reaction, while B represents the frequency factor of the reaction. The boundary
conditions on the outer interface of the energetic material are considered to be adiabatic. In most cases these
conditions are not exactly adiabatic, since there always exist conductive and/or radiative heat losses. Never-
theless we consider an array of closely packed shell-core structures (as it is done in experiments in [3]). In this
case the heat is lost from the outer surface of the array and is therefore substantially reduced for each of the
shell-core structures.

The dimensional balance equations describing conservations of energy in both mediums and mass of fuel are
taken from [7] as follows

S1

{

ρ1c1
∂T1

∂t
+ ρ1c1Uf

∂T1

∂x
− λ1

∂2T1

∂x2
−QΩ

}

= −PK(T1 − T2), (1)

S2

{

ρ2c2
∂T2

∂t
+ ρ2c2Uf

∂T2

∂x
− λ2

∂2T2

∂x2

}

= PK(T1 − T2), (2)

S1

{

ρ1
∂Y

∂t
+ ρ1Uf

∂Y

∂x
− Ω

}

= 0, (3)

where indexes ‘1’ and ‘2’ refer to the solid combustible and pure conductive sections, ρ1,2 is the density, c1,2 is
the specific heat, T1,2 is the temperature, λ1,2 - thermal conductivity, S1,2 is the area of corresponding sections;
P is the perimeter of the intermediate surface, K is an effective heat-exchange coefficient, Q is the heat of the
reaction, Uf , is the combustion wave propagation speed.

The mass fraction is normalized with respect to the upstream value, Y0, and non-dimensional temperatures,
θ1 = (T1 − T0)/(Ta − T0) and θ2 = (T2 − T0)/(Ta − T0), are introduced where Ta = T0 + QY0/c1 denotes the
adiabatic flame temperature and T0 is the ambient temperature. Let us define the characteristic time and length
using the relations

tc = βB−1 exp(E/RTa), lc =
√
tcα1, (4)

where β = γE/RTa is the Zel’dovich number and γ = (Ta − T0)/Ta is the heat release parameter. The
non-dimensional governing equations become

∂θ1
∂t

+ uf
∂θ1
∂x

=
∂2θ1
∂x2

+ ω − ξ · (θ1 − θ2), (5)

∂θ2
∂t

+ uf
∂θ2
∂x

= α
∂2θ2
∂x2

+ s · ξ · (θ1 − θ2), (6)

∂Y

∂t
+ uf

∂Y

∂x
= −ω (7)
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with uf = tcUf/lC representing the dimensionless flame velocity and the dimensionless reaction rate ω given by

ω = βY exp

{

β(θ1 − 1)

1 + γ(θ1 − 1)

}

. (8)

Appropriate boundary conditions are

x → −∞ : θ1 = θ2 = Y − 1 = 0,
x → +∞ : ∂Y/∂x = ∂θ1/∂x = ∂θ2/∂x = 0

(9)

far upstream and downstream.
The parameters appearing in these equations are

α = α2/α1, ξ =
KPβ exp(E/RTa)

ρ1c1S1B
, s =

ρ1c1S1

ρ2c2S2

. (10)

The parameter α = α2/α1 gives the ratio of the thermal diffusivities α1 = λ1/ρ1c1 and α2 = λ2/ρ2c2. It is large
number here since it is crucial to have highly conductive media in order to accelerate the combustion wave. For
cyclotrimethylene trinitramine - carbon nanotubes system considered in [3] parameter α can reach the values
as high as 104.

Parameter ξ represents the ratio of the characteristic heat exchanged through the common surface between
shell and core elements to the heat released in the course of the chemical reaction in the combustible material.
According to the data from [3, 9, 10] it can be of the order of 102 for very small shell thickness or much less
than that. The case ξ = 0 describes the flame propagating in a pure energetic material neglecting the thermal
exchange with the conductive supplement. The Zel’dovich number, β, appearing in equation (8) is usually a
large number and provides that uf → 1 at β ≫ 1 for ξ = 0 in the case of the steady flame propagation.

Parameter s contains both geometric and thermo-physical quantities. The physical meaning of s is that it
is a ratio of characteristic “heat capacities” of shell and core elements. Since it is mostly governed by geometric
factors it can be easily manipulated in experiments and can be either small or large number. It follows from the
definitions (10) that the parameters s and ξ are independent. However they are interrelated via the thermo-
physical properties of the energetic material. So that if ρ1, c1 or S1 are varied, the parameters s and ξ change
in such a way that sξ remains constant.

3 Travelling wave solution

We seek the solution of equations (5-9) in a form of the travelling wave propagating with constant speed without
changing its shape. In this case the temperature and concentration of fuel profiles depend on coordinate only
and (5-9) reduce to the system of ordinary differential equations

θ1xx − ufθ1x + ω − ξ · (θ1 − θ2) = 0, (11)

αθ2xx − ufθ2x + s · ξ · (θ1 − θ2) = 0, (12)

ufYx − ω = 0. (13)

In the downstream region the temperature of fuel and thermal conduit as well as the value of fuel leakage are
not defined. Since it is assumed that there is no reaction happening for x → +∞, we require that the boundary
condition (9) should be a fixed point of (11-13). This is possible if the reaction term in the downstream vanishes
i.e. either Y = 0 or θb is small enough so that the Arrhenious term is negligible. The latter condition implies
that the thermal conduit serves as effectively a thermostat. This case is not considered here, therefore we take
Y = 0 for x → +∞. Also in equations (11, 12) the terms corresponding to the heat exchange between the fuel
and thermal conduit should vanish. Thus we require that θ1 = θ2 = θb for x → +∞.

Equations (11- 13) also possess an integral S = sθ1x + αθ2x + uf (sθ1 + θ2 + sY ). Taking into account the
boundary conditions in the upstream (9), the integral S can be evaluated as S = suf . In the downstream region
this gives θb = s/(1+ s). It is seen that parameter s indicates how much heat is removed from the product zone
of the energetic material to the chemically inert core.

3



3.1 Asymptotic of large s

If s is large then the role of the core is diminishing. Such as in the situation of very thick outer shell and
very thin core. In this case the temperature of the products tends to the adiabatic flame temperature of pure
energetic material i.e. θb → 1. As it is demonstrated below the structure and the speed of combustion wave
also approaches the characteristics of adiabatic flame of the pure energetic material.

The asymptotic behavior of the flame speed for large values of s can be obtained if we assume that s ∼
ξ ∼ α ≫ 1, i.e these parameters are asymptotically large and are of the same order of magnitude. In this case
obviously, the temperatures are θ1 = θ2 +O(1/s). From the other side, equations (11)-(13) give in the leading
order of the asymptotic expansion over 1/s

θ1xx(1 + α/s) + ufθ1x + ω = 0,
ufYx − ω = 0.

(14)

These equations can be rewritten in a standard form for the single step reaction model of flame front propagation
in solid mixture if we define new coordinate x̃ =

√

1 + α/s and flame speed ũf = uf/
√

1 + α/s. For the so-
defined one-step model the flame speed, ũf , tends to unity for β → ∞ by the definition. For finite parameter
values it can be calculated numerically i.g. for β = 8 and γ = 0.7 this gives 1.0209.... Now we can express the
flame speed as

uf = ũf

√

1 + α/s. (15)

If α/s is small equations (14) tend to the ones describing the combustion of pure solid fuel, the distribution of
temperatures θ1,2(x) are monotonic functions close to each other and the flame speed approaches the adiabatic
combustion speed of pure energetic component of the composite. In other words the role of heat conducting
element becomes negligible.

3.2 Asymptotic of small s

If s is small the temperature of the products tends to zero. The situation is encountered in the case of very thin
energetic material in comparison to the heat conducting element. This means that all the heat of the reaction is
absorbed into the passive core of the composite structure which behaves effectively as a thermostat. In the limit
s → 0 combustion waves posses the properties of flame propagation with linear heat loss to the surroundings
and the results of the matched asymptotic analysis [11] applies. The dependence of flame speed on parameters
is a two-valued C-shaped function with a single turning point, which is usually associated with flammability
limit caused by heat losses to the surroundings.

3.3 Asymptotic of large α and β

Here we assume α and β to be asymptotically large parameters. Firstly, we consider the reaction zone region
and introduce temperature expansion

θi = θb − β−1KUi + . . . , (16)

where i = 1, 2 and K = [1 + γ(θb − 1)]2. The expression under the exponent in the reaction rate term can be
expanded as

β(θ1 − 1)

1 + γ(θ1 − 1)
= Λ + Ui +O(β−1), (17)

where Λ = β(θb − 1)/(1 + γ(θb − 1)). Next we define the inner coordinate η = xβeΛ/u1f = δx and parameter
Q = αs−1u−2

1f KeΛ and rewrite equations (11-13) leaving the leading order terms as

Y e−U1 +Kξe−Λ(U1 − U2) = 0,
QU2ηη +Kξe−Λ(U1 − U2) = 0,
Yη − Y e−U1 = 0,

(18)

where it assumed that α−1 is at least O(β−1) or smaller. It is seen from the first equation in (18) that the
difference U1−U2 is exponentially small. If ξ and s are of the order of O(1), then θb ∼ O(1) and Λ ∼ −β. Thus
in order for the second term to be balanced by the first term U1 − U2 ∼ eΛ ≪ 1. This implies that U1 can be
replaced with U2 and (18) can be written as

QU2ηη − Y e−U2 = 0,
Yη − Y e−U2 = 0,

(19)
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The system of equations (19) has to be solved subject to boundary conditions

U2 = Y = 0 for x → −∞,
U2η − C1 = Y − 1 = 0 for x → +∞,

(20)

where C1 is a constant. Equations (19) have an integral QU2η − Y = C2, where C2 = 0 from the boundary
conditions at η → −∞. This allows the system of equations (19) to be rewritten as a single equation

U2ηη − U2ηe−U2 = 0. (21)

Introducing w ≡ U2 as a new independent variable and S ≡ dU2/dw as new dependent variable equation (21)
can be further reduced to

SSw − Se−w = 0, (22)

subject to boundary conditions

S = 0 for w → 0 (or η → −∞),
S = C1 for w → +∞ (or η → ∞),

(23)

Nontrivial solution to (22) can be written as S = 1− e−w. This gives Q = 1 and

u2
1f = αs−1(1 + γ(θb − 1))2 exp

{

β(θb − 1)

1 + γ(θb − 1)

}

, (24)

where θb = s/(s+ 1) as discussed earlier.
The formula for flame speed (24) is consistent with the outer matching conditions, which as usual can be

found from (11-13) after neglecting the reaction terms ω. This yields the system of linear differential equations
subject to (9). It can be solved to give

θ1 = θ2 = θb, Y = 0 for x < 0,
θ1 = θ2 = θbe

µ0x, Y = eµ0x, for x > 0.
(25)

where µ0 is a largest negative root of characteristic equation

E(µ) = µ3 + u1fµ
2(1 + α−1) + µ(α−1(u2

1f − sξ)− ξ)− u1fα
−1(s+ 1)ξ = 0. (26)

If α is considered to be large, then in the leading order the roots of equation are µ0 = 0, µ1,2 = −1/2c ±
√

c2 − 4ξ/2. The first correction with respect to α−1 to the vanishing root can be expressed as µ0 = −u1fα
−1(s+

1) + O(α−2). Taking into account the above definitions the jump of derivative of the temperature across the
reaction zone can be expressed as

[

dU

dη

]+

−

= − 1

Kδ

[

dθ

dx

]+

−

= −θbµ0

Kδ
. (27)

The inner region solution gives [dU/dη]
+

−

= 1. On the other hand substitution of the parameters into the left
hand side of (27) gives the same result. Therefore the solutions to the outer and inner problems are consistent
as long as

β ≫ 1, s ∼ O(1), ξ ≥ O(1), α−1 ≤ O(β−1). (28)

The flame propagation regime considered here is characterized by only weak heat recuperation since the
temperature distribution in shell and core elements of the composite structure are close to each other.

4 Numerical results

In order to obtain the travelling wave solutions we solve (11-13) numerically using standard shooting-relaxation
algorithms. Their linear stability is investigated by using the Evans function method [12] implemented as
described in [13]. The non-stationary solutions are obtained by direct integration of the partial differential
equations (5-9), which are solved by the method of splitting with respect to the physical processes. Initially we
solve the set of ordinary differential equations which describe temperature and fuel concentration variations due
to the reaction by using the fourth order Runge-Kutta algorithm. As a next step, equations of heat and mass
transfer are solved with the Crank-Nicholson method of the second-order approximation in space and time.
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4.1 Speed and structure of combustion wave

In this section the results of numerical calculations of the flame speed and structure are presented. In figure 1
the dependence of uf on α is plotted for β = 8, γ = 0.7 and different values of ξ and s, which are chosen to
cover broad parameter range. Parameter α is the ratio of the thermal diffusivities of core and shell elements
of energetic material. According to the results of asymptotic analysis α should be large in order to obtain
uf > 1 and the condition uf ∼ 1 corresponds to deflagration wave in pure energetic material. The asymptotic
behaviour of uf (α) for large α predicted by both equations (15) and (24) is proportional to

√
α.

The results of numerical calculation are shown in figure 1 with the solid curves. The line marked as ‘1’
shows the dependence uf(α) for ξ = 102 and s = 5. These values of parameters satisfy the conditions (28) for
applicability of flame speed estimation (24), which is also plotted in figure 1 with the dashed line. It is seen
that asymptotic and numerical results agree well in the whole range of α variation from 10 to 3000 considered
here. The curve ‘2’ corresponds to the parameter values ξ = 102 and s = 102. This choice of parameters meets
the conditions of applicability of equation (15). The function (15) is depicted in figure 1 with the dashed-dotted
line and is also in good agreement with the numerical data. The other two asymptotic limits discussed in the
previous section are ξ → 0 and s → 0. In the first case, ξ → 0, the equations (11) reduce to the system for
single step adiabatic reaction model for pure energetic material and uf ∼ 1. The numerical results for small
nevertheless finite value of ξ = 10−2 and s = 5 are shown in figure 1 with the curve ‘3’. The flame speed uf

weakly depends on α and does not follow the root-type behaviour. In the case s → 0 the model (11) tends to
the nonadiabatic one-step reaction model. Thus it is expected that uf weakly depends on α and decays with
the reduction of parameter s. The curve ‘4’ shows the numerical data for s = 0.4 and ξ = 1. It is seen that the
value of uf significantly decreases and attains the maximum 0.145 for α = 3 × 103. From the practical point
of view the regimes with ξ → 0 or s → 0 are not interesting since they do not allow to reach flame velocities
significantly larger than uf = 1.

In all asymptotic limits discussed in section 3 there is a good qualitative agreement between asymptotic
and numerical results. However, for intermediate parameter values the behaviour different from predicted by
equations (15) and (24) can be found. In figure 2 the dependence of the combustion wave speed on s is shown
for α = 102, β = 8, γ = 0.7 and two values of ξ = 1 and 102. The solid lines represent the numerical results,
whereas the dash-dotted and the dotted lines are plotted according to the equations (15) and (24), respectively.
For ξ = 102 the combustion wave velocity is properly described by two asymptotic results i.e. equation (15) for
s ≫ 1 and equation (24) for s ≤ 1. The function uf (s) is single valued in this case. However as ξ is reduced
to 1 the behaviour of uf (s) changes. Two fold bifurcations emerge and there exists a region of values of s with
triple coexisting solutions travelling with different velocities i.e. fast, slow and intermediate solution branches.
In some sense this situation resembles the multiplicity of combustion wave solutions in the model with two
stage competing reactions [14], which is chemistry driven and is caused by the presence of two parallel reaction
paths. Mathematically the system of equations (5–7) is also a set of three partial differential equations as in
[14], however in current model there is only single reaction pathway nevertheless multiplicity is possible even in
such situation.

There are two points s = 4 and s = 1.2 in figure 2 located on the fast and slow solution branches of uf (s) for
the case of ξ = 1, which are numbered as ‘1’ and ‘2’, respectively. We sample two solution profiles for this specific
parameter values. The solution profile on the fast branch is demonstrated in figure 3, where the dependence of
temperature of the reacting shell, Θ1, temperature of inert core, Θ2, and mass fraction of fuel, Y , on coordinate,
x, in the co-moving frame are plotted with the solid, the dashed and the dash-dotted lines, respectively. The
coordinate is scaled so as to cover the range from 0 to 1. The length of the interval of integration x ∈ [0, L]
is L ≈ 37.7. It is clearly seen that there is a strong recuperation effect in this regime of flame propagation.
Heat is effectively absorbed from the product region, where Θ1 > Θ2, and transfered via the highly conductive
core to the preheat region, where Θ2 significantly exceeds Θ1. The maximum temperature of the reacting shell
reaches values as large as 1.2. The adiabatic burned temperature for pure energetic material is equal to 1 in
our scaling. Thus the composite material burn at the superadiabatic temperature in this regime, which we call
the strong recuperation regime.

The profiles Θ1(x), Θ2(x) and Y (x) are plotted in figure 4 with the solid, the dashed and the dash-dotted
lines, respectively. The choice of parameter values α = 102, β = 8, γ = 0.7, ξ = 4 and s = 1.6 corresponds to the
point ‘2’ in figure 2, which is located on the slow solution branch of uf (s) dependence. The coordinate is scaled
so as to cover the range from 0 to 1. The length of the interval of integration x ∈ [0, L] is L ≈ 203.3. We call
this regime of deflagration the weak recuperation regime. It is characterized by monotonic dependencies of Θ1,2

on x. The temperature profiles of core and shell almost merge with slight difference in the reaction zone which
is significantly broader than in the case of the strong recuperation regime. This regime of flame propagation is
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well described by asymptotic analysis in section 3.3. For the intermediate solution branch, which is not shown
here for brevity, the peak value of Theta1 is decreases as we move along the intermediate solution branch from
the fast to the slow branch and it disappears for the slow solution branch as shown in figure 4.

It is important to note here that multiple coexisting regimes are also reported for the gas phase combustion
in narrow channels with heat recuperation through the solid elements. In [15, 16] it is proposed to produce the
excess enthalpy by introducing the highly conductive porous solid into the flame zone. For finite length of the
porous solid it was demonstrated that there is a critical flow rate above which the flame quenches and below
this critical value two different solutions exist. These solutions are characterized by different temperature of
the porous solid and the thickness of the flame zone. In [17, 18] it is demonstrated both experimentally and
analytically that for the flame propagating in a gas mixture flowing inside of the narrow channel with walls
of the finite thickness multiple regimes of combustion are possible. There are either two or three co-existing
combustion waves with different flame velocities and temperatures. The flame multiplicity reported here is a
solid fuel analog of the same phenomena in gas mixture combustion with recuperation of heat.

4.2 Stability of combustion waves

In figure 5 the numerical results for flame stability and speed are summarized. The solid lines represent the
isocurves of constant speed uf = 1, 2, 3 and 3.8 plotted in s vs. ξ plane for α = 102, β = 8 and γ = 0.7. The
s and ξ axes are log-scaled. The neutral stability boundary is shown in figure 5 with the dotted line. Stable
combustion wave solutions correspond to the parameter values located inside of the closed loop formed by the
dotted curve. The onset of instability is due to the Andronov-Hopf bifurcation thus the curve is marked as
‘A-H’. The isocurve uf = 1 marks the boundary in the parameter space: below this curve the flame speed is
less than 1 and therefore the composite material is not effective since it burns at the rates slower than the
pure energetic material. The heat recirculation subsystem is not working and acts as a thermostat extracting
heat from the reacting mixture. Above this curve the flame front propagates faster in composite material than
in pure combustible mixture due to the realization of the ‘excess enthalpy’ concept. The isoline uf = 2 does
not form a closed loop in the s-ξ plane either. In the direction of increasing ξ values the conditions for the
asymptotic approximations (15) and (24) are met. Thus the speed of combustion wave becomes independent
of ξ and isocontours uf = 1 and uf = 2 approach the horizontal lines as seen in figure 5. In the limit ξ ≫ 1
the velocities as high as uf = 3 cannot be attained and the isocontours for uf > 2 form closed loops in the s-ξ
plane. The maximum flame speed possible for the chosen parameter values is slightly larger than 3.8 and the
isocurve uf = 3.8 substantially shrinks in area.

There are two particularities in figure 5 worth further consideration. Firstly, it is seen that the neutral
stability boundary and isocontours of the combustion front velocity intersect i.e. the faster propagation does
not necessarily imply stabilization of deflagration. It should be noted here that in the case of single reacting
mixture without recuperation element the travelling combustion wave is unstable for the parameter values
considered here. More details on stability analysis can be found in [7]. The other important detail is that the
curves uf = const can intersect as it is seen in figure 5 near the point s ∼ ξ ∼ 1. This is caused by the double
folding of the uf dependence on parameters and multiplicity of solutions as shown in figure 2.

In figure 6 the neutral stability boundary is plotted in s vs. ξ plane for α = 102, γ = 0.7 and different
values of β equal to 7, 8, 9 and 9.8 shown with the solid, the dash-doted, the dotted and the dashed lines,
respectively. For β = 7 the solid line divides the parameter plane s vs. ξ into two half planes. The stable
solutions correspond to parameter values above this curve. Combustion wave for pure energetic material is
stable in this case. Therefore, if s is large and the system (5-7) tends to single-step reaction model, the
travelling wave solutions of the system (5-7) are stable. For moderate values of s the heat recuperation leads to
the flame velocities, uf > 1, larger than in pure energetic material as shown in figure 2. This also stabilizes the
combustion wave. As s is decreased the heat recuperation becomes less effective and causes the loss of stability
of combustion wave solution. In the limit of small s the model tends to the one-step nonadiabatic case, the core
element starts to act as a heat sink or thermostat, the value of uf → 0 and flame propagation is unstable for
all values of ξ.

For the cases of β ≥ 8 the propagation of travelling combustion wave in pure energetic material is unstable.
The stabilization of flame propagation is possible in the regions of parameters, where the flame speed is sub-
stantially larger than one. These regions occupy compact areas of elliptic shape in the s − ξ parameter plane
as it is illustrated in figure 5. In the case β = 8 the flame is stable inside of the closed contour shown with the
dash-dotted line. The flame speed vary from uf ≈ 1.5 in the left part of the neutral stability curve to uf ≈ 3.5
for the right part of it. For β = 9 and 9.8 the parameter regions for the stable travelling combustion wave
decrease in area and for β ∼ 10 the regime of stable stationary flame propagation disappears.
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The nature of multiplicity is further delineated in figure 7, where the flame speed is shown as function of ξ for
α = 102, s = 1.6, β = 8, γ = 0.7. There are two Andronov-Hopf bifurcations occurring at ξ ≈ 1.29× 10−2 and
ξ ≈ 1.65 which are depicted with diamonds and marked as ‘A-H1’ and ‘A-H2’, respectively. Stable travelling
wave solutions are found for ξ between these two critical values. There are three distinct branches of solutions:
the fast, the slow and the intermediate branches separated by the pair of fold bifurcations marked as ‘TP1’ and
‘TP2’.

Thus we see that the emergence of multiplicity is due to the competition of two flame propagation regimes
with strong and weak recuperation of heat. The critical parameter values for the emergence of multiple com-
bustion waves are shown in figure 8, where the solid lines demonstrate the critical parameter values for fold
bifurcations in the s − ξ plane for α = 102, β = 8, γ = 0.7. The solid line marked as ‘TP1’ corresponds to
the fold bifurcation from fast to intermediate solution branches. The dashed-dotted line labeled ‘TP2’ shows
the critical parameter values for the onset of the fold bifurcation connecting intermediate and slow solution
branches. The neutral stability boundary which is due to the Andronov-Hopf bifurcation is also plotted with
the dotted line. The dashed line indicates the choice of parameters in the figure 7. The region of coexistence of
triple solutions is located between the curves ‘TP1’ and ‘TP2’.

It is remarkable that in the limit of small values of s the turning point ‘TP2’ disappears as seen in figure
8, while the other turning point ‘TP1’ stays at finite values of ξ. Therefore, the dependence of the flame
speed on parameters changes from S-shaped depicted in figure 7 to C-shaped function which is typical for the
nonadiabatic one-step model. This qualitatively agrees with the analysis in section 3.2.

5 Discussion and Conclusions

In this paper we consider the propagation of deflagration wave in solid composite energetic material of the
shell-core type. It is assumed that the heat is conducted according to Fourier’s law and the thermal-diffusional
approximation is adopted.

It is found that there are two modes of flame propagation is such composite media: the regime of strong
and weak recuperation. In the weak recuperation regime the temperatures of shell and core are monotonic
functions of coordinate. The distribution of temperature in the inert heat conducting core closely matches the
temperature profile of the reacting material in shell with a slight difference in temperatures in the reaction
zone. Flame propagates in the composite media as prescribed by one-step reaction adiabatic model with mixed
properties: the chemistry of mixture is defined by the reacting energetic material and the thermal diffusivity is
governed by the heat conductive core material. According to standard scaling of flame speed it is proportional to
the square root of thermal diffusivity of the reacting media [19]. However, the thermal diffusivity of composite
material is mostly defined by core material and thus the normal flame speed is proportional to α1/2 as shown
in figure 1.

In the regime of strong recuperation, the temperature of the core is also monotonic function of coordinate,
however the distribution of temperature in reacting shell is characterized by a sharp peak in the reaction zone,
which significantly exceeds the adiabatic flame temperature of the pure energetic material. It is remarkable that
the temperature profiles of the shell and core of the composite differ substantially i.e. the composite behaves not
like a single media with certain properties as in the previous case of weak recuperation regime, but as complex
of interacting subsystems: the heat is released in the reacting shell, it is then absorbed from the reaction and
product regions by the core and transfered to the fresh mixture. In other words the core serves as a enthalpy
feedback loop mechanism and the concept of superadiabatic combustion and excess enthalpy is realized in this
regime.

We also found that at certain parameter values when heat capacities of shell and core per unit length in
the direction of flame propagation become comparable i.e. s ∼ 1 the competition of the two flame propagation
regimes may lead to the emergence of triple coexisting solutions, propagating with various flame velocities. This
is a region of parameters where complex dynamical regimes such as flame hysteresis [14] can be expected to
occur and we plan to investigate these scenarios in future work.

From practical point of view the regime of strong recuperation is most desirable, since it delivers the ability
to accelerate flame more effectively than by a factor of α1/2 as in the case of weak recuperation. Therefore
in this paper we are mainly focused on it. It is demonstrated that for the range of parameters considered
here the flame speed can be increased by more than the order in magnitude as compared to pure reacting
material. Also the increase in flame velocity is accompanied by stabilization of combustion wave. Therefore the
strategy of constructing of composite shell-core material can be a very effective way to intensify and stabilize
the combustion wave propagation in solid propellants.
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In this paper we consider the one-dimensional formulation of the problem. Typically the multi-dimensional
combustion wave patterns emerge if the transverse length scale of the system is larger than DT /SL, where DT

and SL are the thermal diffusivity and the velocity of the planar flame, respectively. Such cases are studied
in [20] for cylindrical geometry. The analysis of the present paper is applicable to the systems with transverse
width significantly smaller than DT /SL. In future work we plan to consider the models where this restriction
is omitted and the two- and three-dimensional structures can be formed.
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Figure 1: Flame speed, uf as a function of α for β = 8 and γ = 0.7. The solid curves represent the results of
numerical calculation for ξ = 102, S = 5 (curve ‘1’), ξ = 102, S = 102 (curve ‘2’), ξ = 10−2, S = 5 (curve
‘3’), ξ = 1, S = 0.4 (curve ‘4’). The dashed line is plotted according to (24) for ξ = 102, S = 5, while the
dash-dotted line shows the dependence (15) for ξ = 102, S = 102.
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Figure 2: Flame speed as a function of s for α = 102, β = 8, γ = 0.7 and two values of ξ = 1 and 102. Parameter
s is plotted in logarithmic scale. The dash-dotted and the dotted lines represent the asymptotic results (15)
and (24), respectively, for the case ξ = 102.
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Figure 3: The strong recuperation regime. The temperature Θ1(x) (solid line), Θ2(x) (dashed line) and mass
fraction Y (x) (dash-dotted line) profiles of the travelling combustion wave for α = 102, β = 8, γ = 0.7, ξ = 1
and s = 4.
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Figure 4: The weak recuperation regime. The temperature Θ1(x) (solid line), Θ2(x) (dashed line) and mass
fraction Y (x) (dash-dotted line) profiles of the travelling combustion wave for α = 102, β = 8, γ = 0.7, ξ = 1
and s = 1.2.
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Figure 7: Flame speed as a function of ξ for α = 102, β = 8, γ = 0.7 and s = 1.6. The diamonds show the
critical parameter values for the Andronov-Hopf bifurcation.
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Figure 8: Critical parameter values for the fold (‘TP1’ and ‘TP2’) and Andronov-Hopf (‘A-H’) bifurcations in s
vs. ξ parameter plane for α = 102, β = 8, γ = 0.7. The dashed line corresponds to the choice of s = 1.6 shown
in figure 7.

14


