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Abstract

In this paper we investigate the thermal-diffusive instability of premixed
adiabatic flames in rich hydrogen-air mixtures at normal ambient conditions.
Several models which feature the same two-step global kinetics with chain-
branching and recombination reaction steps are considered. These global
kinetic steps are assumed to be controlled by different elementary reactions.
The flame speed and structure are investigated numerically by using the
shooting-relaxation algorithms. The stability is studied by means of the
Evans function method and by direct integration of the governing partial
differential equations. It is demonstrated that the two-step models are capa-
ble of accurately predicting the speed and structure of combustion waves as
well as flame stability and frequency of pulsations of unsteady combustion
waves.
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1. Introduction

It is well known that combustion waves can propagate in rich hydrogen-
air mixtures only up to certain values of equivalence ratio, beyond which the
flame extinguishes. Although many factors may affect the observed flamma-
bility limits, such as buoyancy, diffusion, kinetics etc, which may also come
into play with each other, it is generally common to focus on certain isolated
physical processes while analysing such complex phenomenon in order to
reveal their role. In this paper, the consideration is devoted to the thermal-
diffusional approximation of the premixed flame propagation. In this frame
the flammability limit may be caused by several factors. In the nonadiabatic
case the flame can extinguish due to the presence of conductive or radiative
heat losses [1, 2]. In the adiabatic limit the explanation of flame extinc-
tion can be given as the competition of chain-branching and recombination
reactions [3], i.e. the radical quenching, or due to the onset of complex os-
cillating dynamical regimes [2, 4, 5, 6]. The latter scenario is closely related
to the loss of stability of planar flame [6, 5]. Therefore the analysis of flame
stability is important for the understanding of combustion wave extinction.
Besides the fundamental interest in this subject, finding the flammability
limits is also important from the point of view of hydrogen safety. In this
paper we focus on the analysis of near-limit behaviour of premixed flames in
rich hydrogen-air mixtures at normal ambient conditions (298K and 1atm).

Although to date there is a good understanding of the hydrogen oxidation
chemistry which includes eight chemical species [7, 8], there is still a lack
of short reduced mechanisms for modelling the problems with multi time
and length scales such as studying the flame stability and time dependent
regimes of flame propagation. One of the first models of the H2 - O2 mixture
combustion was proposed in [9]. This model included the branching A +
B → 3B and the recombination B + B + M → P + M steps, where A
is the deficient component concentration, for example, O2, B is the H atom
concentration which is considered as the only radical involved in the reaction.
In [10] the steady-state approximation for O, OH and HO2 was adopted
and a similar model was derived and investigated for rich hydrogen-oxygen
flames. In this case the rate of the first global reaction is governed by the
elementary step H+O2 → OH+H and the rate of the second global reaction
is governed by elementary reaction H +H +M → H2 +M . In [11] the two-
step reaction mechanism was further developed. It was shown to be capable
of producing reasonably accurate predictions for the flame structure and
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speed as compared to the data obtained from both the detailed chemistry
calculations and experiments. The two-step mechanism was used in [12] to
study the asymptotic structure of premixed hydrogen-air flames. Recently
in [13, 14], the model was tested using numerical calculations with detailed
mechanism of the reaction and it was demonstrated that the two-step reaction
model gives a good approximation for the velocity of the flame propagation.

As discussed in [13, 14], the rate of H recombination is governed by two
elementary reactionsH+H+M → H2+M andH+O2+M → HO2+M . The
H-radical recombination with O2 has a higher rate and must be faster in the
presence of appreciable oxygen concentration. The square-law termination
reaction however, could play a substantial role in the case of hydrogen rich
mixtures and/or slow recombination regimes when the concentration of H
atoms becomes significant and O2 is rapidly depleted in the course of fast
branching. The importance of the linear recombination reaction of H is also
discussed in [3, 15].

In [3, 10, 16, 17] the significance of hydroperoxyl radical is speculated. In
[3] it is demonstrated that in rich hydrogen-oxygen flames HO2 can attain
quite significant values and should be taken into consideration, while concen-
trations of O and OH are still small and corresponding reactions related to
them can be neglected. The inclusion of HO2 radical results in the two-step
model introduced by Liñán as reported in [16]. The model was studied in
[3], where it is shown to accurately predict the speed and structure of the
rich hydrogen-oxygen flames as compared to the calculations based on the
detailed reaction mechanism. In [17], the mechanism was further modified to
include an initiation reaction H2 + O2 → HO2 +H and the equilibrium as-
sumption for hydroperoxyl radical was to relaxed. The resulting model was
found to be suitable for analysing deflagration, autoignition and diffusion
hydrogen-air flames.

Numerical analysis of the models with detailed reaction mechanisms have
been used to study various aspects of premixed hydrogen flames such as com-
parison with experiments [18], effect of the multicomponent transport [19]
etc. In a number of papers [2, 20, 21, 22, 15, 3, 4] the detailed kinetic
mechanism was used to numerically investigate the dynamics of premixed
hydrogen flame propagation near the rich flammability limit. In [22] it was
shown that as the composition of the hydrogen-air mixture gets richer when
the oscillatory behaviour is observed. The onset of pulsations was found at
the H2 content of 75 − 76% in the mixture where uncertainty was related
to computational error. Qualitatively similar results were obtained in [15].
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These authors drew a conclusion that the observed oscillations are the re-
sults of underlying physics, and not a “numerical artefact”. The emergence
of oscillations was attributed to the competition of the chain-branching and
termination reactions for the H radicals. The critical hydrogen content was
determined to be around 79%. As the equivalence ratio was increased the
oscillations of the flame speed became more relaxational. The amplitude and
period of oscillations were reported to grow. At certain conditions, period
doubling behaviour was clearly observed in the time histories of the flame
speed. The increase of hydrogen content to 84% led to flame extinction
i.e. neither travelling nor pulsating combustion wave propagation regimes
were possible at these rich compositions. This complex dynamical scenario
is similar to the observation of flame oscillations in solid combustion, one-
and two-step reaction models (see [5] for literature review). In [21] the re-
sults summarized above were qualitatively confirmed, although the onset of
pulsations was determined for mixtures with more than 75% of H2. The
flammability limit was also reduced to 82% of hydrogen in fresh mixture. In
[2, 20], both the case with and without heat loss were studied for normal con-
ditions and elevated pressures. For normal conditions in the adiabatic case
the onset of pulsations was found for equivalence ratio near 7.4, at 7.6 the
solution of period two was observed, whereas at higher values of equivalence
ratio the oscillations become very relaxational, that is the flame exhibits
long periods of “depression”, when propagation stops, followed by intervals
of recovery, when flame speed peaks to maximal values. As the mixture gets
richer, the oscillatory route to extinction was observed. In [4] the premixed
hydrogen-oxygen flames were found to oscillate as the mixture got richer.
These oscillations were attributed to diffusive-thermal instability.

Although there is an apparent progress in the stability analysis of H2-air
flame near the rich flammability limit in terms of numerical modelling with
the detailed kinetics, there have been no attempts to investigate the stability
problem based on the models with reduced reaction mechanisms. As de-
scribed above, models with two-step kinetics are capable to predict the flame
speed and structure with a reasonable accuracy. Therefore one can expect
that such reduced models to be a useful alternative to the computationally
expensive calculations based on detailed kinetics in the stability analysis of
the hydrogen-air flame and the investigation of complex dynamical regimes
such as period doubling and oscillatory route to extinction. From the math-
ematical point of view, the two-step chain-branching models, the Zeldovich-
Liñán model [23, 24] with the quadratic law for the radical recombination and
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the Dold model [25] with the linear radical recombination reaction, are the
most relevant to the two-step reduced models for hydrogen-air combustion
outlined above.

The Zeldovich-Liñán model comprises a chain branching reaction A+B →
2B, and a chain-breaking (or recombination) reaction B+B+M → 2P+M ,
where A is the fuel, B is the intermediate radical, P is the product, andM is
a third body of collision needed for recombination, which is not changed by
the reaction. It is assumed that the first reaction has a large activation energy
and negligible heat of the reaction whereas, the recombination reaction has
zero activation energy and is exothermic. The stability analysis for this
model was carried out in [26]. The chain-branching models with first-order
recombination reactions, B+M → P +M , have become very popular in the
last decade. Partly, this is due to the fact that for the models with first-order
reaction, like the model introduced in [25], both the properties and stability
of the travelling combustion waves can be studied using the activation energy
asymptotic analysis. The properties of premixed combustion waves in this
model were investigated in various aspects in a number of papers [5, 25,
27, 28, 29, 30]. As noted in [26], the kinetics can change the properties of
combustion waves and the results obtained for the models with linear and
quadratic recombination reaction can be significantly different.

The aim of the work presented in the current paper is to investigate
the stability of the premixed hydrogen-air flame near the rich flammability
limit by using the reduced two-step chain-branching reaction models. We
consider three types of models: the model with quadratic law of the radicals
recombination H +H +M → H2 +M , the model with both quadratic and
linear reaction pathways forH recombination, and the model which takes into
consideration the hydroperoxyl radical. The paper is organized as follows.
In section 2 the mathematical formulation is presented. In sections 3 and 4
the results of numerical analysis for the flame speed, structure and stability
are described and discussed. The conclusions are presented in section 5.

2. Formulation and methods

We consider a thermal-diffusive adiabatic model for rich hydrogen-air
flame in single spatial dimension that includes two steps: chain branching
3H2+O2 → 2H2O+2H and recombination H+H+M → H2+M . According
to [3, 16] when the burning temperature is not too high the concentrations of
O, OH , and H2O2 are small, the elementary reaction related to them can be
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neglected and the rates of the gross reactions are controlled by the following
three elementary steps

ωI = w1 + αw4,

ωII = w4 + w5.
(1)

The rates w1 (H +O2 → OH +O), w4 (H +O2 +M → HO2 +M), and w5

(H+H+M → H2+M) are taken from either San-Diego kinetic mechanism [7]
(results will be labelled with ‘SD’) or from [8] (results will be labelled with
‘WB’). The reaction constants can be written as ki(T ) = Aie

Ei/RT , where
Ai(T ) = Ai(T0)(T/T0)

ni are the pre-exponential factors and T0 = 298K.
The expression for α is derived in [16, 3] using the steady-state equations for
O, OH , and HO2 as α = (k7 + k8)(k6 + k7 + k8 + k9[OH ]/[H ])−1. Reactions
6−9 which involve HO2 are numerated as in [4]. The rate constants required
to estimate α are taken from [31].

According to [3], the dimensional equations governing this process can be
written as

ρcp
∂T

∂t
= λ∆T + qIωI + qIIωII ,

ρ
∂YO2

∂t
= ρDO2

∆YO2
−WO2

ωI ,

ρ
∂YH
∂t

= ρDH∆YH + 2WH(ωI − ωII),

(2)

where ∆ = ∂2/∂x2 ; T is the temperature; YO2
and YH represent the mass

fraction of O2 and H respectively; ρ is the density; λ is the thermal conduc-
tivity; cp is the specific heat; DO2

and DH represent the diffusivities of the
molecular oxygen and hydrogen radicals respectively; WH andWO2

represent
the molecular weights of H and O2; qI is the specific heat of the branching
whereas qII represents the specific heat of the recombination reaction; E is
the activation energy for the chain branching reaction; R is the universal gas
constant. Eqs. (2) are considered subject to boundary conditions

T = Ta, YO2
= Y ∞

O2
, YH = 0 for x→ +∞,

∂T/∂x = 0, ∂YO2
/∂x = 0, YH = 0 for x→ −∞,

(3)

which correspond to a wave travelling in the positive x-axis direction. Up-
stream, on the right boundary, T is equal to the ambient temperature, Ta;
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oxygen has not been consumed yet and YO2
is equal to its maximal initial

value in the cold unreacted mixture, Y ∞

O2
; no radicals have been produced

i.e. YH = 0. Downstream, on the left boundary, we require that there is no
reaction happening, so the solution reaches a stationary point of Eq. (2).
Therefore the zero flux conditions for T , YO2

, and zero condition for YH are
imposed.

Introducing the nondimensional time, t′ = (ρA1/e
ββM∗)t, coordinate

x′ = (ρ2A1cp/λM
∗βeβ)1/2x, variables

θ =
T

T ∗β
, yO2

=
YO2

Y ∞

O2

, yH =
WO2

YH
2WHY

∞

O2

, (4)

and dimensionless parameters

β =
Ecp

RqIIY ∞

O2

, LO2,H =
λ

DO2,Hρcp
, Ri =

2i−4Ai[M ]e1/θb

A1

, (5)

where i = 4, 5; θb is the downstream temperature of the burned mixture; [M ]
is the third body concentration, M∗ = WO2

/Y ∞

O2
and T ∗ = qIIY

∞

O2
/WO2

cp
is the reference mass and temperature respectively, β is the dimensionless
activation energy, LO2

and LH are the Lewis numbers for O2 and H-radicals
respectively, we write Eqs. (2) and (3) omitting primes as

θt = θxx + Ω2 +
qI
qII

Ω1,

yO2t = L−1
O2
yO2xx − βΩ1,

yHt = L−1
H yHxx + βΩ1 − βΩ2,

(6)

and
θ = θa, yO2

= 1, yH = 0 for x→ +∞,

θ = θb, ∂yO2
/∂x = 0, yH = 0 for x→ −∞.

(7)

The nondimensional reaction rates are

Ω1 = yO2
yHe

β−1/θ + αyO2
yHR4e

β−1/θb ,
Ω2 = R4yO2

yHwe
β−1/θb +R5y

2
He

β−1/θb .
(8)

The physical values, ρ, Di, cp and λ, characterizing the gas mixture as well
as reaction coefficients Ri are treated as constants and are evaluated at the
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temperature equal to 1/2Tb [14] and pressure of 1atm. For given mixture
composition, φ, the burning temperature is calculated. Then the thermody-
namic data for the elements of the gas mixture is obtained from the NIST
database [32] at the temperature equal to the half of the burning temper-
ature. This data is then used to calculate the physical properties of the
mixture according to methods described in [33]. The quantities obtained us-
ing this approach, ρ, cp and λ, correspond to specific mixture composition,
while Di represent diffusion coefficients of H or O2 in the multicomponent
mixture. The Lewis numbers LO2,H are then calculated according Eq. 5 as
functions of φ and are found to agree with the data reported in [3, 18] for the
range of equivalence ratios considered in this work. In figure 1 the results
of calculations of LO2,H are presented, where the Lewis numbers are plotted
as functions of equivalence ratio for all models considered in this work. The
data for different models lie almost on top of each other. Parameter α only
weakly depends on the mixture composition and changes from 0.837 to 0.846
for φ = 5 and 9 respectively. The ratio of qI/qII ≈ 0.11 and is a constant
regardless of φ. The activation energy is almost a linear function of φ as it
is shown in figure 1, where β is plotted for all four models and the data for
the different models is, once again, found to be very close. The reaction con-
stants, R4,5, which appear in Eqs. (8), are calculated according to definition
(5) with the kinetic data taken from [7] and [8]. The dependence of R4,5 on
the inverse of the burned temperature, θb, is presented in figure 2. The reac-
tion rates are plotted in the logarithmic scale. It is seen that the functions
Ri(θ

−1) is almost linear, which agrees with Eqs. (5). The slight deviation
from the linear behaviuor is caused by the dependence of the mixture density
and Ai on θb. The governing equations (6) can be represented in the same
form for all four models considered here. The difference between the models
is illustrated in table 1 and is discussed in the next section.

In order to find the speed and the structure of combustion wave the
problem (6)-(7) is reduced to a system of ordinary differential equations.
The solution to the problem (6)-(7) is sought in the form of a traveling wave
θ(x, t) = θ(ξ), yO2

(x, t) = yO2
(ξ), and yH(x, t) = yH(ξ), where a coordinate

in the moving frame, ξ = x − ct, is introduced and c is the speed of the
travelling wave. Substituting the solution of this form into the governing
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equations we obtain

θξξ + cθξ + Ω2 + qI/qIIΩ1 = 0,
L−1
O2
yO2ξξ + cyO2ξ − βΩ1 = 0,

L−1
H yHξξ + cyHξ + βΩ1 − βΩ2 = 0.

(9)

Now, we multiply the first equation by β, add it to the second equation
for yO2

multiplied by 1+qI/qII and the third equation for yH in Eqs. (9) and
integrate it once with respect to ξ over (−∞, +∞). This yields a condition:
limξ→−∞ S = limξ→+∞ S, where S = βθ + (1 + qI/qII)yO2

+ yH . Combining
this condition with Eqs. (7) results in the following expression for burned
temperature θb = θa + (1 + qI/qII)/β. The system of ordinary differential
equations together with Eqs. (7) constitute the two-point boundary value
problem, which is solved numerically by using a standard shooting algorithm
with a fourth order Runge-Kutta integration scheme first and then the results
are corrected by employing the relaxation algorithm.

The stability of the combustion waves is investigated in a way similar
to [26]. We linearize the governing Eqs. (6) near the travelling wave so-
lution. We seek solution of the form θ(x, t) = U(ξ) + ǫφ(ξ)eλt, yO2

(x, t) =
V (ξ) + ǫψ(ξ)eλt, and yH(x, t) = W (ξ) + ǫχ(ξ)eλt, where [U(ξ), V (ξ), W (ξ)]
represent the travelling combustion wave. Here terms proportional to the
small parameter ǫ are the linear perturbation terms, λ is a spectral parameter
governing the time evolution of the perturbation. Substituting this expansion
into Eq. (6), leaving terms proportional to the first order of ǫ only, and intro-
ducing the vector function with components v(ξ) = [φ, ψ, χ, φξ, ψξ, χξ]

T

we obtain
vξ = Â(ξ, λ)v, (10)

where

Â =

[

0 Î

Ĥ + λQ̂ −cQ̂

]

, Q̂ =





1 0 0
0 LO2

0
0 0 LH



 , (11)

Here H(ξ) is a Wronskian of source terms in Eqs. (6) calculated at U(ξ),
V (ξ), W (ξ) and Î is 3 × 3 identity matrix. We will call a set, Σ, of all
λ values for which there exists a solution to Eq. (10) bounded for both
ξ → ±∞ a spectrum of linear perturbations. In the general case, Σ is a
set on the complex plane and it consists of the essential and the discrete
spectrum. If there exists at least one λ ∈ Σ such that Reλ > 0, then the
travelling wave solution is linearly unstable, otherwise, if for all λ ∈ Σ the
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real parts are not positive, then the travelling wave solution is linearly stable.
Therefore in order to investigate the linear stability of the travelling wave
solutions to Eq. (6), the spectrum Σ of the problem (10) has to be found.
It can be shown (see [34] for details) that the essential spectrum consists
of parabolic curves in the complex plane with Reλ ≤ 0. This implies that
it is the discrete spectrum of the problem (10) that is responsible for the
emergence of instabilities. The linear stability problem is solved by finding
the location of the discrete spectrum on the complex plane using the Evans
function method [34].

The nonlinear stability analysis as well as the properties of the solutions
bifurcating from the travelling waves are investigated by direct integration
of Eqs. (6). For our numerical algorithm we use the method of splitting
with respect to the physical processes. Initially we solve the set of ordinary
differential equations which describe the temperature and the species concen-
tration variations due to the branching and recombination reactions by using
the fourth order Runge-Kutta algorithm. As a next step, equations of heat
and mass transfer for fuel and radicals are solved with the Crank-Nicholson
method of the second-order approximation in space and time. The initial
conditions for the numerical scheme are taken in a form of the traveling wave
solution (or autowave) of Eqs. (9).

3. Travelling waves

In this section the results of numerical analysis for the three models dis-
cussed earlier are presented.

3.1. ZL model

Firstly, we consider the model proposed in [9, 10] which includes two
overall steps with the rates, ωI,II controlled by the elementary reactions w1

(H + O2 → OH + O) and w5 (H + H +M → H2 +M) respectively i.e.
ωI = w1 and ωII = w5. It is assumed that H is the only radical involved in
the reaction, and the concentrations of all other intermediates are insignifi-
cant. The first reaction is considered to possess a large activation energy and
negligible heat of the reaction whereas, the recombination reaction has zero
activation energy and is exothermic. Taking this into account R5, α, qI are
considered to vanish in Eqs. (6). It is shown in [26] that the model can be
written in the form of the Zeldovich-Liñán model therefore it will be referred
to as the ZL-model.
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In figure 3 the dependence of the flame speed, c, on the equivalence ratio
of the mixture, φ, is plotted. Here and thereafter in this paper normal
conditions for the ambient temperature, Ta, and pressure, P , are implied
i.e. Ta = 298K and P = 1atm. The speed is shown in dimensional units -
meters per second. The solid lines represent the numerical results obtained
here. The curves marked with the index ‘SD’ or ‘WB’ correspond to the
choice of reaction constants as in [7] or in [8] respectively. As is seen the
calculations with the reference data from [8] gives systematically smaller
flame speed as compared to the calculations based on the data from [7]. The
reaction rate, R5, utilizing the ‘SD’-scheme is less than the corresponding
reaction rate using the ‘WB’-scheme in the range of φ values considered here.
As reported in [26] the increase of the rate of recombination reaction, R5,
shifts the combustion conditions towards the faster recombination regime,
which results in the reduction of the flame speed. The symbols in figure 3
correspond to various experimental and numerical data from the literature
[2, 15, 22, 35, 36, 37, 38] as referred in figure inlet. The ZL-model utilizing
the ‘SD’ kinetic data gives a very good approximation for the flame speed.

The solution profiles for the mole fractions of oxygen, XO2
, H radicals,

XH , and temperature, T , are plotted in figure 4 as functions of the coordinate,
x, in the reference frame travelling with the combustion wave. The results are
presented for φ = 5.57, which corresponds to the hydrogen content of 70% in
fresh mixture as in [19]. The mole fraction ofH is multiplied by 4 in the figure
so as to accommodate both XO2

and XH on the same graph. It is seen that
the discrepancy between the ‘SD’ and ‘WB’ profiles of the H mole fractions
is significant. The maximal values of H content are maxXSD

H ≈ 0.0079
and maxXWB

H ≈ 0.0039, whereas the detailed kinetics calculations [19] give
maxXDet

H ≈ 0.0078. Once again we see that the results obtained with the
ZL-model based on the ‘SD’ kinetic data provides an accurate approximation
of the flame structure. The significant reduction of XH for the model with
‘WB’ kinetics can also be explained by the larger value of the recombination
reaction rate in comparison to the corresponding term using the ‘SD’ data.
The faster consumption of H radicals in this case causes the decrease of the
XH .

The stability of the combustion wave has been investigated by using the
Evans function method as outlined in section 2. We have found the flame to
be stable with respect to pulsating (longitudinal) perturbations for the whole
range of equivalence ratios considered here. This is not surprising since in
[26] it was shown that the neutral stability boundary for combustion waves
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in the Zeldovich-Liñán model shifts to large values of activation energy as
the Lewis number for fuel is decreased. The limiting component is O2 in our
case and the corresponding Lewis number, LO2

, is about 2. High activation
energy correspond to large φ for the model considered here. Thus the neutral
stability boundary moves to φ values much greater then φ = 7 − 8 reported
in the literature [2, 15, 20, 21, 22].

3.2. ZLD model

As a next step, the ZL-model considered above is modified to include
the linear recombination step with respect to the H concentration. Such
an extension is discussed in [39]. In this case the two gross steps with the
rates, ωI,II, are controlled by elementary reactions w1 (H +O2 → OH +O),
w4 (H + O2 + M → HO2 + M), and w5 (H + H + M → H2 + M) i.e.
ωI = w1 and ωII = w4 + w5. As in the previous case it is assumed that H is
the only radical involved in the reaction. The first reaction is considered to
have a large activation energy and negligible heat of the reaction whereas,
the recombination reaction has zero activation energy and is exothermic.
Formally this implies that in Eqs. (6), parameters α and, qI are equal to
zero. The model will be referred to as the ZLD-model.

The governing equations for the ZLD-model are solved numerically. The
results of the analysis are presented in figure 5 where the dependence of
the flame speed, c, on the equivalence ratio of the mixture, φ, is plotted.
Once again the symbols in figure 5 correspond to data from the literature
[2, 15, 22, 35, 36, 37, 38] as referred in figure inlet. The solid curves represent
the results of the current work. The curves marked with the index ‘SD’ or
‘WB’ correspond to the choice of reaction constants as in [7] or in [8] respec-
tively. The inclusion of the reaction H + O2 +M → HO2 +M intensifies
the recombination of H radicals substantially. As a result the qualitative
behaviour of the dependence of the flame speed for this model on the equiv-
alence ratio changes. As φ approaches a certain finite value the flame speed
vanishes and the combustion wave extinguishes. This is shown in figure 5,
where both the ‘SD’ and ‘WB’ curves cross the c = 0 axis. Similar behaviour
is discussed in [3] and also reported in [29] for the Dold model, which also
has a linear dependence of the rate of the recombination reaction on the
concentration of radicals.

The rate of the reaction H + O2 +M → HO2 +M can be written in
dimensionless form as w4 = R4yO2

yHe
β−1/θb , whereas the rate of radicals

production via the reaction H +O2 → OH +O is w1 = yO2
yHe

β−1/u. Hence,
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there is a crossover temperature, θ∗, at which the rates of w1 and w4 are equal.
For moderate values of φ the process is sufficiently exothermic and θb > θ∗.
However, as φ is increased and the combustion becomes less exothermic the
burning temperature approaches the crossover temperature. As a result the
flame must extinguish as the mixture gets richer. The onset of extinction
is enhanced by the recombination reaction w5. The numerical calculations
show that the combustion wave exhibits extinction for the ZLD model at the
values of φ around six for both choices of reaction constants.

The Evans function analysis shows that the inclusion of w4 reaction pro-
motes the onset of pulsating instability. Thus the role of the reaction 4 is
twofold. It shifts both the extinction and neutral stability boundary towards
smaller values of φ. We consider the pre-exponential constants of the reac-
tions 4 and 5 as free parameters in order to develop a model which fits both
the flame speed and stability as predicted by the calculation with detailed
kinetics. For definiteness the results of [2] are taken as the target data of such
an analysis and the ’SD’ kinetic constants are used. The model will be re-
ferred to as the PN-model. The rates of the reactions have to be substantially
reduced in order to fit the data of [2], which predict the onset of pulsations
for φ between 7.3 and 7.4. The best fit was found for APN

4 = 0.0655ASD
4

and APN
5 = 0.117ASD

5 . The dependence of the flame speed on φ for the
PN -model is shown in figure 5 with the curve marked ‘PN’. As expected it
approaches the results of [2] plotted with the empty circles for equivalence
ratios close to 7. The curve shows the stable solution and is discontinued
once it becomes unstable for φ = 7.31... The Evans function method allows
the prediction of the frequency of pulsations which emerge as a result of the
Hopf bifurcation [5]. We have found f ≈ 64Hz in our calculations, whereas
in [2, 20] it is reported to be around 80Hz. The earlier papers [15, 21] predict
much smaller frequencies of about 12 − 30Hz. It should be noted that the
frequency of nonlinear oscillations can depend on the amplitude, particularly,
when the amplitudes are large. However here and later on we only discuss
the frequencies of small pulsations just beyond the critical parameter values
for the Hopf bifurcation when the amplitude of pulsations is small. The so-
lution profiles for the PN-model are plotted in figure 4 with solid lines. It
should be noted that the PN-model overestimates the maximum value of H
for φ = 5.57, that is maxXPN

H ≈ 0.014.
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3.3. CL model

The model that admits the role of hydroperoxyl radical was proposed by
Liñán. It is formulated in [16], studied in [3] and will be referred to as the
’CL’ model. From the point of view of kinetics it assumes that H is also
consumed by the reactions involving HO2. This is taken into account in Eqs.
(1) by the term proportional to α in the expression for the rate of the global
reaction ωI . It is also considered that the heat of the branching reaction, qI ,
is not negligible.

The flame speed is found by numerically solving the governing equations
(9) subject to boundary conditions (7). The results are presented in figure 6,
where the dependence of the flame speed, c, on the equivalence ratio of the
mixture, φ, is plotted. The meaning of the symbols and notations is the same
as in figures 1 and 4. The stability analysis is also carried out by using the
Evans function method. The solid lines correspond to the stable solutions,
whereas the dashed lines show the unstable solution branches. The location
of the points at which the stability changes are marked with filled squares on
the ‘SD’ and ‘WB’ curves. It is seen that the predictions of the flame speed
calculated with both ’SD’ and ’WB’ kinetic schemes are located between the
results of [15] and [2] for values of φ greater than 8. For smaller values of
the equivalence ratio the ’CL’ model tends to over predict the flame velocity
as compared to the results reported in the literature cited in the figure. The
onset of pulsations is found at φ = 7.32 and φ = 7.82 when ’SD’ and ’WB’
reaction constants are used respectively. These results correlate with the
data from the calculations with detailed kinetics [2, 3, 4, 15, 20, 21, 22]. The
Hopf frequency for the ’SD’ reaction scheme is found to be 220Hz, whereas
for the ’WB’ kinetic scheme it is 70Hz. The substantially higher value of
the frequency of oscillation corresponding to the ’SD’ reaction constants is
due to the fact that the nondimensional time is inversely proportional to
reaction constant, A1, which is almost 3 times higher for the ’SD’ mechanism
as compared to the ’WB’ mechanism.

In figure 7 the solution profiles for T , XO2
, and XH are plotted for φ =

5.57. The solid and the dashed lines correspond to the ’SD’ and ’WB’ reaction
schemes respectively. The molar concentration of H is multiplied by 10 so
as to plot it on the same graph with XO2

. The structure of the solutions
is very close for both reaction schemes and also is in good agreement with
the results of [19]. It should be noted that the burned temperature is higher
than in figure 4. This is caused by the additional heat release, qI , from the
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branching reaction step, which has to be taken into account for the accurate
estimate of the flame temperature.

4. Stability analysis

In this section we select three models i.e. the Zeldovich-Liñán-Dold with
fitted rate constants (PN), Clavin-Liñán model with two choices of the rate
constants (CL-SD and CL-WB) and study the stability of the deflagration
waves in greater detail for these cases. The selection is based on the above
analysis which indicates that the highlighted models are capable of predicting
the flame speed and stability for rich mixtures.

In figure 8 the typical solution of the eigenvalue problem (10) is illustrated
for the Clavin-Liñán model. As the neutral stability boundary is approached
by increasing the equivalence ratio two complex conjugate points of the dis-
crete spectrum move from the left to the right half of the complex plane
causing the loss of stability of the travelling wave solution due to occurrence
of the Hopf bifurcation. We will denote the critical value of the equivalence
ratio at which this bifurcation occurs as φh. In figure 8 the real and imag-
inary part of λ is plotted against the difference of φ from the critical value
φh with the solid and dashed lines respectively. Here only a single point of
the discrete spectrum with positive imaginary λ is shown. As the bifurcation
parameter, φ−φh, is increased the real Reλ grows resulting in the travelling
wave solution becoming more unstable, whereas the Imλ, responsible for the
frequency of oscillations decay.

In figure 9 the neutral stability boundary corresponding to the critical
parameter values for the Hopf bifurcation is plotted in the initial temperature
against the equivalence ratio parameter plane. The stable propagation of
combustion waves is encountered for the parameter values located above the
curves in each case. The temperature is measured in Kelvins. The stability
results are obtained using the Evans function technique as discussed earlier.
All curves show similar qualitative behaviour: the neutral stability boundary
shifts to richer mixtures as the temperature is increased. The Clavin-Liñán
model with kinetic data from [8] overestimates the region of stability, while
the CL model with ‘SD’ reaction constants and the phenomenological ZLD
model are in better agreement especially for the ambient temperatures close
to normal conditions. In figure 9 the Hopf frequencies, f , are also given
for each curve at the initial temperature of T0 = 150K and the equivalence
ratio φ = 11. The eigenvalues, λ, of the linear stability problem Eq. 10 are
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used to calculate f as Imλ/2π, where λ is taken at the critical condition
for the loss of stability i.e. Reλ = 0. For T0 = 150K the Hopf frequencies
are fPN ≈ 89Hz, fCL−SD ≈ 400Hz, and fCL−WB ≈ 120Hz, whereas for
φ = 11 they are fPN ≈ 38Hz, fCL−SD ≈ 136Hz, and fCL−WB ≈ 36Hz. It
is clearly seen that the preheating of the unburned mixture results in lower
Hopf frequencies. Also the Clavin-Liñán model with kinetic data from [8]
(CL-WB) gives substantially higher estimates of the Hopf frequency.

As the neutral stability boundary is crossed in the parameter space the
deflagration wave travelling without changing its speed and shape loses sta-
bility due to the Hopf bifurcation. The numerical integration of the governing
Eqs. 6 suggest that the pulsating combustion regime of flame propagation
emerge as a result of the Hopf bifurcation. This scenario was observed for all
three models. The typical behavior of pulsating combustion wave in the PN
model is illustrated in figure 10 for φ = 7.478 and normal ambient conditions.
The value of φ is taken above the critical value of the equivalence ratio for
the Hopf bifurcation, φh = 7.31... The initial profile taken in the form of the
traveling combustion wave is unstable and exhibits pulsating instabilities.
These instabilities distort the solutions of Eqs. 6 at the initial stages of the
evolution of the profile. There are transient peaks in the temperature distri-
bution in the coordinate space and oscillations of the shape and maximum
value of the mass fraction of the H profile, max{XH}. The XO2

profile is
mainly affected in the variation of the front curvature although some small
oscillations of the mass fraction of O2 are also observed in the product region.

To study the pulsating behaviour further it is useful to introduce ξ =
x − cdriftt, a coordinate in the frame traveling with speed cdrift which is
the mean value of the flame propagation velocity cdrift = limt→∞ xmax/t,
where xmax is the coordinate of the maximum of the H mass fraction in
the laboratory coordinate frame. The value of maxXH and the location of
the maximum of the radical concentration ξmax are convenient parameters to
describe the pulsating nature of the solution.

As the pulsating instabilities evolve, the value of maxXH oscillate with
an amplitude which initially grows exponentially with time. The frequency
of these oscillations is given by the imaginary part Imλ and the rate of expo-
nential growth is determined by the real part, Reλ, of the pair of points of the
discrete spectrum, responsible for the onset of instability. At times of the or-
der of (Reλ)−1, the amplitudes of oscillations, maxXH , reach saturation and
stabilize at certain values. The behavior of T (ξ, t) and XH,O2

(ξ, t) profiles
become periodic in time and so the pulsating combustion wave is formed. In
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figure 10 the temperature and the mass fraction of H-radical profiles of the
pulsating combustion wave are plotted respectively for three moments of time
t1 = 0 (solid), t2 = 3.148 × 10−3 s (dash-dotted), and t3 = 1.25918 × 10−2s
(dashed). Since the solution is periodic, time is measured from 0 to T , where
T ≈ 0.0223 s is the period of oscillations.

In figure 11 the dependence of maximal value of mass fraction of H on
time is plotted for the periodic pulsating combustion wave with φ = 7.478.
As we move away from the Hopf locus in the parameter space, by increasing
φ from the critical value, the oscillations become more relaxational i.e. the
maxXH(t) contains higher harmonics in a Fourier series expansion. It is seen
in figure 11, where the oscillations are not harmonic and is characterized by
sharp peeks and flat deeps. The increase of φ is also accompanied by the
growth of the period of pulsations. Thus for maxXH the period T ≈ 0.0223
s, while immediately after crossing the Hopf locus the period is 0.015625... s
as it is discussed in section 3.2.

Next we investigate how the amplitude of oscillations of the function
max{XH}(t) depends on the bifurcation parameter φ. In order to do this for
a given fixed value of φ we plot the minimum and maximum values of this
function for the pulsating periodic combustion waves against the equivalence
ratio in figure 12. For steady travelling combustion waves there are no pul-
sations and max{XH}(t) is constant with time. These solution branches are
shown with the thick solid curves. For the oscillatory solutions the minimum
and maximum values of the peak value of XH in the coordinate space are
plotted as two dots. As seen in figure 12 that, as φ is increased beyond the
Hopf bifurcation point, the amplitude of pulsations grows continuously and
has a root-type behaviour. This type of behaviour is common for the super-
critical Hopf bifurcation. The amplitude of pulsations grows faster for the
PN model with the increase of φ from the Hopf value in comparison to the
CL model.

The flame speed is also affected by the onset of pulsations. In figure 13 the
dependencies of both c and cdrift on φ are plotted for travelling and pulsating
solutions respectively. The stable solution branches are shown with the solid
lines and the dotted lines represent the unstable travelling wave solutions,
which become unstable owing to Hopf bifurcation. Immediately after the
Hopf bifurcation the pulsating solution branches out from the travelling wave
solution. As seen in figure 13 the pulsating wave on average travels slower
than the traveling wave and the difference c−cdrift is growing with increasing
φ from the Hopf value.

17



5. Conclusions

We have considered four two-step chain-branching adiabatic models for
premixed flame propagation in rich hydrogen-air flames in order to investigate
the thermal-diffusive pulsating instability near the rich flammability limit.
It was assumed that the reaction proceed in two overall steps, H is the
only radical involved in the reaction. The first reaction is considered to
have a large activation energy and small heat of the reaction whereas, the
recombination reaction has zero activation energy and is exothermic.

In the Zeldovich-Liñán model the overall branching and termination reac-
tions are controlled by elementary steps H+O2 → OH+O andH+H+M →
H2+M , respectively. The numerical analysis has shown that the model with
kinetic data from [7] accurately predicts normal flame speed for rich mixtures
as compared to the data obtained with the detailed kinetics calculations.
However the combustion wave solutions was found to be stable up to very
large values of equivalence ratio (over ten). This is not feasible according to
the calculations with detailed kinetics [2, 15, 21, 22]. Therefore it is clear that
this model is suitable for the study of stationary flame propagation problems
only.

In the Zeldovich-Liñán-Dold model the overall recombination reaction
is controlled by two elementary steps: H + O2 + M → HO2 + M and
H+H+M → H2+M . The inclusion of the reactionH+O2+M → HO2+M
intensifies the recombination ofH radicals substantially. As a result the flame
extinguishes at finite values of equivalence ratio of the order of six, which
makes this particular model inappropriate for the study of rich hydrogen-
air flames. However, based on the Zeldovich-Liñán-Dold model, we formu-
late the phenomenological model, where the rate constants of the reactions
H+O2+M → HO2+M and H+H+M → H2+M are considered as fitting
parameters. This results in an approach which gives an accurate prediction
of the flame speed near the flammability limit, the critical equivalence ra-
tio for the onset of pulsating instabilities and the frequency of oscillations.
The structure of the combustion wave also agrees reasonably well with the
calculations based on the detailed kinetics. Although the phenomenological
model tends to overestimate the concentration of the H radicals.

The Clavin-Liñán model assumes that H is also engaged in the reactions
involving HO2, although hydroperoxyl radicals are considered to be in steady
state. As a result the rate of the global branching reaction is modified. The
heat of the branching reaction is not vanishing as well. The resulting model
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with the kinetic data from [8] is shown to give accurate predictions for the
flame speed and structure, as well as stability and frequency of pulsations for
large equivalence ratios. However, the model overestimates the flame speed
for moderately rich hydrogen-air flames.

The Clavin-Liñán model and the Zeldovich-Liñán-Dold model with fit-
ted rates of the reactions are chosen for further stability analysis since they
demonstrate the capabilities of predicting the flame speed, structure and sta-
bility. The neutral stability boundary was found as a function the ambient
temperature. It was shown that increasing the initial temperature extends
the region of stable combustion to richer mixture compositions. The depen-
dence of the Hopf frequency on the initial temperature is also investigated.
It is found that the frequency of pulsations decay with the preheating of the
fresh mixture. Also the Clavin-Liñán model with the kinetic data from [7]
overestimates the Hopf frequency in comparison with the other models.

The Hopf bifurcation which is responsible for the loss of stability of the
travelling combustion waves is further investigated. It is demonstrated to be
supercritical and the stable pulsating combustion waves emerge as the neutral
stability boundary is crossed due to the Hopf bifurcation. These regimes are
characterized by oscillations of the peak values of the temperature and the
H-radical concentrations profiles. The pulsating waves are periodic functions
of time in the coordinate frame co-moving with average speed of the flame
propagation. It is found that the average flame speed decreases faster than
the traveling wave speed as the equivalence ratio is increased from the critical
parameter values for the Hopf bifurcation. Also as we move away from the
neutral stability boundary the period of oscillations and the amplitude of
oscillations of the peak values of the H-profiles grow.

To summarize, our investigation of the various reduced models shows that
the Clavin-Liñán model is suitable for the analysis of the complex pulsating
dynamics of the hydrogen flames near the rich flammability limit. We plan
to further verify the model against different pressure conditions in our future
investigations.
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7. List of tables

Table 1. Parameters α, qI , and R4,5 for the different models. The ab-
breviation ZL, ZLD, and CL corresponde to the Zeldovich-Liñán, Zeldovich-
Liñán-Dold, and Clavin-Liñán models respectively. The nonzero parameter
values are indicted as ‘+’ and the superscripts provide the references to the
corresponding equations or papers used to calculate the values of these pa-
rameters.

8. List of captions

Fig. 1 Dependence of the Lewis numbers for O2 and H (left axis) and
activation energy, β, (right axis) on the equivalence ratio, φ.

Fig. 2 Dependence of the reaction constants R4,5 on the inverse of the
burning temperature, θb, for the choice of kinetic constants as in [7] or in [8].

Fig. 3 Dependence of the speed, c, of combustion wave on the equivalence
ratio for the ZL model. The solid lines represent the numerical results ob-
tained here, whereas the symbols show various experimental and numerical
data from the literature. The curves marked with the index ‘SD’ or ‘WB’
correspond to the choice of reaction constants as in [7] or in [8] respectively.

Fig. 4 Solution profiles for XO2
, XH and T as functions of coordinate x

for φ = 5.57. The solid lines correspond to the fitted model ‘PN’ discussed
in section 3.2. The dotted and the dashed lines represent the results for the
ZL model with the ‘SD’ or ‘WB’ scheme kinetic parameters.

Fig. 5 Dependence of the speed, c, of the combustion wave on the equiv-
alence ratio for the ZLD model. The solid lines represent the numerical
results obtained here, whereas the symbols show various experimental and
numerical data from the literature. The curves marked with the index ‘SD’
or ‘WB’ correspond to the choice of reaction constants as in [7] or in [8]
respectively. The curve marked ’PN’ represents the results for ZLD model
with fitted reaction rates.

Fig. 6 Dependence of the speed, c, of the combustion wave on the equiva-
lence ratio for the CL model. The solid lines represent the numerical results
obtained here, whereas the symbols show various experimental and numeri-
cal data from the literature. The curves marked with the index ‘SD’ or ‘WB’
correspond to the choice of reaction constants as in [7] or in [8] respectively.
The unstable solution branches are shown with the dashed lines.
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Fig. 7 Solution profiles for XO2
, XH and T as functions of coordinate x

for φ = 5.57. The solid and the dashed lines represent the results for CL
model with ‘SD’ or ‘WB’ kinetic parameters respectively.

Fig. 8 The real and imaginary parts of the points of the discrete spectrum,
λ, as functions of φ− φh shown with the solid and dashed lines respectively.
The results correspond to CL model with ‘SD’ or ‘WB’ kinetic parameters.

Fig. 9 Neutral stability boundary for the travelling combustion waves as
a function of the equivalence ratio. The solid curve represents the results for
ZLDmodel with fitted reaction rates. The dashed and the dashes-dotted lines
correspond to the Clavin-Liñán model with the choice of reaction constants
as in [7] (‘SD’) or in [8] (‘WB’) respectively.

Fig. 10 Pulsating combustion wave solutions for φ = 7.478. The tem-
perature (left axis) and radical mass fraction (right axis) profiles, T (ξ) and
XH(ξ), are plotted as functions of coordinate in co-moving frame. The pro-
files are sampled at t1 = 0, t2 = 3.148 × 10−3 s, and t3 = 1.25918 × 10−2s,
which correspond to the solid, dash-dotted, and dashed lines respectively.

Fig. 11 Time history of pulsations of maximum value ofXH for φ = 7.478.
Fig. 12 Temporal maximum and minimum of the peak value of the molar

fraction of H in space, maxXH , as function of φ. The thick solid lines and
dots connected with the thin solid lines represent the travelling wave and
pulsating solutions respectively.

Fig. 13 Dependence of the flame speed, c, on the equivalence ratio for
the PN, CL-SD, and CL-WB models. The solid lines represent the numerical
results obtained here, whereas the symbols show various experimental and
numerical data from the literature. The unstable solution branches are shown
with the dashed lines.
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